Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(y-2\right)}{2.3}=\frac{x-1+2\left(y-2\right)+z-3}{2+6+4}=\frac{x-1+2y-4+z-3}{12}\)
\(\frac{x+2y+z-8}{12}=\frac{30-8}{12}=\)
\(\frac{x-1-y+2-z+3}{2+3+4}=\frac{x-y-z+4}{9}\)
rồi mk cu~g chẳng bt nữa @@
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy \(x=-3\); \(y=-4\); \(z=-5\)
e) \(x\left(x+y+z\right)=-12\); \(y\left(y+z+x\right)=18\); \(z\left(z+x+y\right)=30\)
\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)
\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\); \(y=\frac{18}{-6}=-3\); \(z=\frac{30}{-6}=-5\)
TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\); \(y=\frac{18}{6}=3\); \(z=\frac{30}{6}=5\)
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\), \(\left(-2;3;5\right)\)
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
a/ Ta có :
\(\frac{x}{y}=-\frac{6}{9}=-\frac{2}{3}\)
\(\Leftrightarrow\frac{x}{-2}=\frac{y}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-2}=\frac{y}{3}=\frac{x-y}{-2-3}=\frac{30}{-5}=-6\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{-2}=-6\\\frac{y}{3}=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=-18\end{matrix}\right.\)
Vậy.....
b/ Ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{5}=2\\\frac{y}{4}=2\\\frac{z}{7}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=8\\z=14\end{matrix}\right.\)
Vậy....
c/ Ta có :
+) \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{21}=\frac{y}{28}\left(1\right)\)
+) \(\frac{y}{7}=\frac{z}{5}\Leftrightarrow\frac{y}{28}=\frac{z}{20}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x}{42}=\frac{3y}{84}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{21}=\frac{y}{28}=\frac{z}{20}=\frac{2x}{42}=\frac{3y}{84}=\frac{2x+3y-z}{42+84-20}=\frac{106}{106}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{21}=1\\\frac{y}{28}=1\\\frac{z}{20}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=21\\y=28\\z=20\end{matrix}\right.\)
Vậy...
a) Ta có: x/2 = y/3 => x/8 = y/12 (1)
y/4 = z/5 => y/12 = z/15 (2)
Từ (1) và (2) => x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/8 = y/12 = z/15 = x + y - z / 8 + 12 - 15 = 10/5 = 2
x/8 = 2 => x = 2 . 8 = 16
y/12 = 2 => y = 2 . 12 = 24
z/15 = 2 => z = 2 . 15 = 30
Vậy x = 16; y = 24 và z = 30
b) Ta có: x/2 = y/3 => x/10 = y/15 (1)
y : 5 = z : 4 => y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) => x/10 = y/15 = z/12
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10 = y/15 = z/12 = x - y + z / 10 - 15 + 12 = -49/7 = -7
x/10 = -7 => x = -7 . 10 = -70
y/15 = -7 => y = -7 . 15 = -105
z/12 = -7 => z = -7 . 12 = -84
Vậy x = -70; y = -105 và z = -84
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = 2y/6 = 3z/12 = x + 2y - 3z / 2 + 6 - 12 = -20/-4 = 5
x/2 = 5 => x = 5 . 2 = 10
y/3 = 5 => y = 5 . 3 = 15
z/4 = 5 => z = 5 . 4 = 20
Vậy x = 10; y = 15 và z = 20.