K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2019

Ta có: \(x:y:z=2:3:4\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{2z}{8}\)

Vì \(x-2z+7=10-y\)

\(\Rightarrow x-2z+y=10-7\)

\(\Rightarrow x+y-2z=3\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{2z}{8}=\frac{x+y-2z}{2+3-8}=-1\)

\(\Rightarrow\hept{\begin{cases}x=-1.2=-2\\y=-1.3=-3\\z=-1.4=-4\end{cases}}\)

Vậy...

15 tháng 10 2020

Ta có: \(x-2z+7=10-y\)

\(\Leftrightarrow x+y-2z=10-7\)

\(\Leftrightarrow x+y-2z=3\)

Vì \(x:y:z=2:3:4\)\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{2z}{8}=\frac{x+y-2z}{2+3-8}=\frac{3}{-3}=-1\)

\(\Rightarrow x=2.\left(-1\right)=-2\)

\(y=3.\left(-1\right)=-3\)

\(z=4.\left(-1\right)=-4\)

Vậy \(x=-2\)\(y=-3\)\(z=-4\)

Bài 4:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)

\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)

Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)

Bài 2:

a: x:y=4:7

=>\(\dfrac{x}{4}=\dfrac{y}{7}\)

mà x+y=44

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)

=>\(x=4\cdot4=16;y=4\cdot7=28\)

b: \(\dfrac{x}{2}=\dfrac{y}{5}\)

mà x+y=28

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)

=>\(x=4\cdot2=8;y=4\cdot5=20\)

Bài 3:

Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)

=>x=5k; y=4k; z=3k

\(M=\dfrac{x+2y-3z}{x-2y+3z}\)

\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)

\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)

23 tháng 1

bài 1 đâu hả bạn 

 

22 tháng 6 2015

làm xong mà vào viện ah

11 tháng 9 2021

im mom

27 tháng 1 2023

Ai làm được thì giúp mình với ;-;

23 tháng 9 2017

Theo đề bài ta có:
\(\dfrac{4}{3x-2y}=\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\)

\(\Rightarrow\)4(2z-4x) = 3(3x-2y)
3(4y-3z) = 2(2z-4x)
Ta có:

4(2z-4x) = 3(3x-2y)\(\Rightarrow\)8z-16x = 9x-6y\(\Rightarrow y=\dfrac{25x-8z}{6}\) (1)

\(\dfrac{3}{2z-4x}=\dfrac{2}{4y-3z}\Rightarrow3\left(4y-3z\right)=2\left(2z-4x\right)\)

\(\Rightarrow12y-9z=4z-8x\Rightarrow12y+8x=13z\) (2)

Thay (1) vào (2) ta có:

2(25x-8z)+8x = 13z\(\Rightarrow\)58x = 29z\(\Rightarrow\)z = 2x\(\Rightarrow\)y = \(\dfrac{3}{2}x\)

Thay vào đề bài x + y- z= - 10 ta tìm được:

x = -10; y = -20; z = -30

13 tháng 10 2020

Ta có : \(\frac{4}{3x-2y}=\frac{3}{2z-4x}=\frac{2}{4y-3z}\) với x+y-z = -10 (1)

\(\Rightarrow4\left(2z-4x\right)=3\left(3x-2y\right)\) ; \(3\left(4y-3z\right)=2\left(2z-4x\right)\)

Ta có :

+) \(4\left(2z-4x\right)=3\left(3x-2y\right)\Rightarrow8z-16x=9x-6y\)\(\Rightarrow y=\frac{25x-8z}{y}\left(2\right)\)

+) \(3\left(4y-3z\right)=2\left(2z-4x\right)\Rightarrow12y-9z=4z-8x\)\(\Rightarrow12y+8x=13z\left(3\right)\)

Thay (1) vào (2) ta có :

\(2\left(25x-8z\right)+8x=13z\)

\(\Rightarrow50x-16z+8x=13z\)

\(\Rightarrow58x=29z\)

\(\Rightarrow2x=z\) (4)

\(\Rightarrow y=\frac{3}{2}x\) (5)

thay (4) và (5) vào biểu thức x+y-z = -10 ta có :

\(x+y-z=-10\Leftrightarrow x+\frac{3}{2}x-2x=-10\)

\(\Rightarrow\frac{1}{2}x=-10\)

\(\Rightarrow x=-20\) ; \(y=\frac{3}{2}\left(-20\right)=-30\) ; \(z=-20\cdot2=-40\)

vậy \(x=-20;y=-30;z=-40\)