Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(y^{54}\right)^2=y\)\(\Rightarrow y^{108}=y\)\(\Rightarrow y=\pm1\)
\(b,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
\(c,x\left(6-x\right)^{2019}=\left(6-x\right)^{2019}\)
\(\Rightarrow\left(6-x\right)^{2019}\left(x-1\right)=0\)
\(\Rightarrow x\in\left\{1;6\right\}\)
\(\left(y^{54}\right)^2=y\)
\(\Rightarrow y^{108}=y\)
\(\Rightarrow y^{108}-y=0\)
\(\Rightarrow y\cdot\left(y^{107}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^{107}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^{107}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Tham khảo tại link : https://olm.vn/hoi-dap/detail/98893470469.html
\(\left(\frac{1}{2}\right)^x=\frac{1}{64}\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^6\)
=> x=6
a)\(x^{23}=64.x^{20}\)
\(\Leftrightarrow\frac{x^{23}}{x^{20}}=64\)
\(\Leftrightarrow x^3=64\Rightarrow x=4\)
b)\(\left(4x-3\right)^4=3-4x\)
\(\Leftrightarrow\left(3-4x\right)^4=3-4x\)
\(\Leftrightarrow\left(3-4x\right)^3=1\)
\(\Leftrightarrow3-4x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
Nên \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\) \(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy x = 1 và y = -2