K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2023

`x/2 =y/5`

`=> (2x)/4 =y/5`

Ad t/c của dạy tỉ số bằng nhau ta có

` (2x)/4 =y/5 = (2x+y)/(4+5) = -18/9 = -2`

`=>{(x=2*(-2) = -4),(y=-2*5 =-10):}`

14 tháng 1 2023

ta có : `x/2=y/5=>(2x)/4=y/5` và `2x+y=-18`

áp dụng tính chất dãy tỉ số bằng nhau ta có 

`2x/4=y/5=(2x +y)/(4+5)=-18/9=-2`

`=>x/2=-2=>x=-2.2=-4`

`=>y/5=-2=>y=-2.5=-10`

20 tháng 10 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{2x+y}{2\cdot2+5}=\dfrac{18}{9}=2\)

Do đó: x=4; y=10

8 tháng 10 2016

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)

Áp Dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{12}=\frac{24}{12}=2\)

=> \(\frac{x+1}{3}=2\Rightarrow x+1=6\Rightarrow x=5\)

=> \(\frac{y+2}{4}=2\Rightarrow y=6\)

=> \(\frac{z+3}{5}=2\Rightarrow z=7\)

8 tháng 10 2016

\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=\frac{2x+3y+4z}{4+12+24}=\frac{9}{40}\)

=>\(\frac{x+1}{2}=\frac{9}{40}\Rightarrow x=-0,55\)

=> \(\frac{y+3}{4}=\frac{9}{40}\Rightarrow y=-2,1\)

=>\(\frac{z+5}{6}=\frac{9}{40}\Rightarrow z=-3,65\)

19 tháng 10 2018

a)\(x.x=\frac{y}{-3}.\frac{y}{-3}=\frac{z}{4}.\frac{z}{4}=\frac{x^2+y^2-z^2}{1+9-16}=\frac{6}{-6}=-1\)

không tồn tại vì x.x>=0

b)\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{6}\)

\(\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{z}{8}=\frac{y}{6}\)

Suy ra \(\frac{x}{15}=\frac{y}{6}=\frac{z}{8}=\frac{x-y+z}{15-6+8}=\frac{10}{17}\)

\(x=15.\frac{10}{17}=\frac{150}{17}\)

\(y=6.\frac{10}{17}=\frac{60}{17}\)

c) \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{14}{2}=7\)

x=7.5=35; y=3.7=21

d) \(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{2x+y}{4+5}=\frac{18}{9}=2\)

x=2.2=4;  y=2.5=10

25 tháng 8 2018

a) ADTCDTSBN

có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)

=> x/2 = 3 => x = 6

y/3 = 3 => y = 9

z/4 = 3 => z = 12

KL:...

b,c làm tương tự nha

d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)

ADTCDTSBN

có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)

=>...

25 tháng 8 2018

e) ADTCDTSBN

có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)

\(=\frac{21+6}{9}=\frac{27}{9}=3\)

=>...

g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)

mà xy = 12 => 4k.3k = 12

                          12.k2 = 12

                              k2 = 1

                        => k = 1 hoặc k = -1

=> x = 4.1 = 4

y = 3.1 = 3

x=4.(-1) = -4 

y=3.(-1) = -3

KL:...

h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)

ADTCDTSBN

có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)

=>...

15 tháng 11 2015

bài 2 :

ta có x:y:z=3:5:(-2)

=>x/3=y/5=z/-2

=>5x/15=y/5=3z/-6

áp dụng tc dãy ... ta có :

5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4

=>x/3=-=>x=-12

=>y/5=-4=>y=-20

=>z/-2=-4=>z=8

4 tháng 12 2015

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=\frac{2x}{4}=\frac{2x-y+z}{4-\left(-3\right)+5}=\frac{18}{12}=1,5\)

=> x/2=1,5 => x=1,5.2=3

      y/-3=1,5 => y=1,5.(-3)=-4,5

     z/5=1,5 => z=1,5.5=7,5

20 tháng 11 2020

a, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{-2}=\frac{2x+5y}{2.3+5.\left(-2\right)}=-\frac{12}{-4}=3\)

\(x=-3;y=6\)

b, Theo bài ra ta có : \(x:y=4:5\Leftrightarrow\frac{x}{4}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{13}{-1}=-13\)

\(x=-52;y=-65\)

c, Theo bài ra ta có: \(4x=7y\Leftrightarrow\frac{x}{7}=\frac{y}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{12}{3}=4\)

\(x=28;y=16\)

17 tháng 6 2019

b,Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{y}{5}=\frac{x}{2}=\frac{y-x}{5-2}=\frac{15}{3}=5\)

Vậy : \(\hept{\begin{cases}\frac{y}{5}=5\Leftrightarrow y=25\\\frac{x}{2}=5\Leftrightarrow x=10\end{cases}}\)

\(\frac{2x-y}{x+y}=\frac{2}{3}\Rightarrow\frac{6x-3y}{2x+2y}=0\)

\(\Rightarrow6x-3y=0\)

\(3.\left(2x-y\right)=0\Rightarrow2x-y=0\)

\(\Rightarrow2x=y\)

\(adtcdts=ntc:\)

\(\frac{y}{5}=\frac{x}{2}=\frac{y-x}{5-2}=\frac{15}{3}=5\)

Cứ thế tính x,y