Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{x+y}{2015}=\frac{xy}{2016}=\frac{x-y}{2017}=\frac{x+y-x+y}{2015-2017}=\frac{2y}{-2}\)
\(=-y\)
\(\Rightarrow xy=-2016y;x+y=-2015y;\)
\(x-y=-2017y\)
\(\Rightarrow-2016y-xy=0\)
\(\Rightarrow y\left(-2016-x\right)=0\)
\(\Rightarrow\orbr{\orbr{\begin{cases}y=0\\-2016-x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}y=0\\x=-2016\end{cases}}\)
\(+) \)\(y=0\Rightarrow0+x=-2015.0=0\Rightarrow x=0\)
\(+) \)\(x=-2016\Rightarrow-2016-y=-2017y\Rightarrow-2016\)
Vậy +) x=y=0
+) x=-2016;y=1
2) Có: \(\frac{2x+2}{3}=\frac{x+1}{1,5};\frac{4z+2}{5}=\frac{z+0,5}{1,25};\frac{3y-1}{4}=\frac{y-\frac{1}{3}}{\frac{4}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{1,5}=\frac{y-\frac{1}{3}}{\frac{4}{3}}=\frac{z+0,5}{1,25}=\frac{x+y+z+\left(1-\frac{1}{3}+0,5\right)}{1,5+\frac{4}{3}+1,25}=\frac{7+\frac{7}{6}}{\frac{49}{12}}=2\)
Suy ra: \(x+1=2.1,5=3\Rightarrow x=2\)
\(y-\frac{1}{3}=2.\frac{4}{3}=\frac{8}{3}\Rightarrow y=3\)
\(z+0,5=2.1,25=2,5\Rightarrow z=2\)
Vậy x=2;y=3;z=2.
Ta có: \(\frac{x+y}{2014}\)=\(\frac{x-y}{2016}\)
=>\(2016x+2016y=2014x-2014y\)
=> \(2x=-4030y\)
=>\(x=-2015y\)
\(Thay\)\(x=-2015\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được
\(\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(-y=-y^2\)
=>\(y-y^2=0\)
\(y\).(\(1-y\))\(=0\)
\(=>\orbr{\begin{cases}y=0\\1-y=0\end{cases}}=>\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
TH1 :\(y=0=>x.y=-2015.0=0\)
TH2 :\(y=1=>x.y=-2015.1=-2015\)
Do Ix-2015I; Ix-2016I; Ix-2017I lớn hơn hoặc bằng không với mọi x
Mà P bé nhất khi Ix-2015I + Ix-2016I + Ix-2017I bé nhất
TH1 khi Ix - 2015I = 0 => x =2015 => I 2015 - 2015I + I2015 - 2016I +I2015 - 2017I = 0 + 1 + 2 = 3 (đặt là 1)
TH2 khi Ix-2016I = 0 => x= 2016 => I2016 - 2015I + I2016 - 2016I + I 2016 - 2017I = 1 + 0 + 1 = 2 ( đặt là 2)
TH3 khi Ix-2017I = 0 => x= 2017 => I2017- 2015I + I 2017 - 2016I +I 2017 - 2017I = 2+1 + 0 = 3( đặt là 3)
Từ 1, 2, 3 => Giá trị bé nhất của P là 2 khi x=2016
Do |x-2015| ; |x-2016| ; |x-2017| lớn hơn hoặc bằng 0 với mọi x
Mà P bé nhất khi |x-2015| + |x-2016| + |x-2017| bé nhất
TH1: Khi |x-2015| = 0 suy ra x = 2015 suy ra | 2015 - 2015 | + | 2015 - 2016 | + | 2015 - 2017 | = 0 + 1 + 2 = 3 ( 1 )
TH2: Khi |x-2016| = 0 suy ra x = 2016 suy ra | 2016 - 2015 | + | 2016 - 2016 | + | 2016 - 2017 | = 1 + 0 + 1 = 2 ( 2 )
TH3: Khi |x-2017| = 0 suy ra x = 2017 suy ra | 2017 - 2015 | + | 2017 - 2016 | + | 2017 - 2017 | = 2 + 1 + 0 = 3 ( 3 )
Từ ( 1 ) ; ( 2) ; ( 3 ) suy ra giá trị nhỏ nhất của P là 2 khi x = 2016
Ta có: (x+2015)^2016>=0(với mọi x)
|y-2017|>=0(với mọi y)
Do đó, (x+2015)^2016+|y-2017|>=0(với mọi x,y)
mà (x+2015)^2016+|y-2017|=0
nên (x+2015)^2016=0 và |y-2017|=0
x+2015=0 y-2017=0
x=0-2015 y=0+2017
x=-2015 y=2017
Vậy x=-2015 và y=2017 thì x,y thỏa mãn đề