Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>x-2017=0 và y-2018=0
=>x=2017; y=2018
b: =>3x-y=0 và y+2/3=0
=>y=-2/3 và 3x=-2/3
=>x=-2/9 và y=-2/3
c: =>3/4x-1/2=0 và 4/5y+6/25=0
=>x=2/3 và y=-3/10
Áp dụng bđt: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(VT=\left|x-2015\right|+\left|x-2016\right|+\left|y-2017\right|+\left|x-2018\right|\)
\(VT=\left|x-2015\right|+\left|2018-x\right|+\left|x-2016\right|+\left|y-2017\right|\)
\(VT\ge\left|x-2015+2018-x\right|+\left|x-2016\right|+\left|y-2017\right|\)
\(VT\ge3+\left|x-2016\right|+\left|y-2017\right|\ge3\)
\(VT\ge VP\)
Dấu "=" khi: \(\left\{{}\begin{matrix}2015\le x\le2018\\x=2016\\y=2017\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2016\\y=2017\end{matrix}\right.\)
ta có
\(\left|x-2015\right|+\left|2018-x\right|+\left|x-2016\right|+\left|y-2017\right|=3\)
Áp dụng tính chất dấu giá trị tuyệt đối, t acó
\(\left|x-2015\right|+\left|2018-x\right|\ge\left|2018-x+x-2015\right|=3\)
mà \(\left|y-2017\right|\ge0;\left|x-2016\right|\ge0\)
=>VT>=3
dấu = xảy ra <=>y=2017 và x=2016