K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2017

a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)

\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\)

\(=\frac{1}{2}-\frac{1}{3n+2}=\frac{3n+2}{2\cdot\left(3n+2\right)}-\frac{2}{2\cdot\left(3n+2\right)}\)

\(=\frac{3n+2-2}{6n+4}=\frac{3n}{6n+4}=VP\)

27 tháng 1 2017

chết phần a quên nhân vs 1/3

9 tháng 8 2016

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)

\(2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{\left(2x+1\right).\left(2x+3\right)}\right)=2.\frac{15}{93}\)

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.....+\frac{2}{\left(2x+1\right).\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)

\(\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(\Rightarrow2x=90\)

\(\Rightarrow x=45\)

5 tháng 5 2016

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+......+\frac{1}{x\left(x+3\right)}=\frac{6}{19}\)

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.......+\frac{1}{x}-\frac{1}{x+3}=\frac{6}{19}\)

\(1-\frac{1}{x+3}=\frac{6}{19}\)

\(\frac{x+3-1}{x+3}=\frac{6}{19}\)

\(19.\left(x+2\right)=6\left(x+3\right)\)

19x+38=6x+18

13x= -20

x= \(\frac{-20}{13}\)

27 tháng 2 2018

\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{4620}\)

\(\frac{1}{x+3}=\frac{823}{4620}\)

10 tháng 6 2020

\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)\)

\(=\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(=\frac{1}{x+3}=\frac{1}{308}\)

2 tháng 5 2015

a.x=3

b.x=-21/2

c.-7/2

d.112/81

29 tháng 5 2017

a) \(5\frac{8}{17}:x+\frac{-1}{17}:x+3\frac{1}{17}:17\frac{1}{3}=\frac{4}{17}\)

\(\frac{93}{17}:x+\frac{-1}{17}:x+\frac{52}{17}:\frac{52}{3}=\frac{4}{17}\)

\(\left(\frac{93}{17}+\frac{-1}{17}\right):x+\frac{52}{17}.\frac{3}{52}=\frac{4}{17}\)

\(\frac{92}{17}:x+\frac{3}{17}=\frac{4}{17}\)

\(\frac{92}{17}:x=\frac{4}{17}-\frac{3}{17}\)

\(\frac{92}{17}:x=\frac{1}{17}\)

\(x=\frac{92}{17}:\frac{1}{17}\)

\(x=92\)

b) \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{6}{19}\)

\(\frac{1}{3}.\left(1-\frac{1}{4}\right)+\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+...+\frac{1}{3}.\left(\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)

\(\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{6}{19}\)

\(\frac{1}{3}.\left(1-\frac{1}{x+3}\right)=\frac{6}{19}\)

\(1-\frac{1}{x+3}=\frac{6}{19}:\frac{1}{3}\)

\(1-\frac{1}{x+3}=\frac{18}{19}\)

\(\frac{1}{x+3}=1-\frac{18}{19}\)

\(\frac{1}{x+3}=\frac{1}{19}\)

\(\Rightarrow x+3=19\)

\(\Rightarrow x=19-3\)

\(\Rightarrow x=16\)

7 tháng 8 2016

\(\left(\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{17\times19}\right)\times114-0,2\left(x-1\right)=10\)

\(\Rightarrow\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}\right)\right]\times114-0,2x+0,2=10\)

\(\Rightarrow\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{19}\right)\right]\times114+0,2-0,2x=10\)

\(\Rightarrow\frac{8}{57}\times114+0,2-0,2x=10\Rightarrow16+0,2-0,2x=10\)

\(\Rightarrow16,2-0,2x=10\Rightarrow0,2x=16,2-10\Rightarrow0,2x=6,2\Rightarrow x=31\)

30 tháng 4 2019

Bài làm

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)

\(1-\frac{1}{x+2}=\frac{2015}{2016}\)

\(\frac{1}{x+2}=\frac{1}{2016}\)

\(\Rightarrow x+2=2016\)

\(x=2014\)

30 tháng 4 2019

#thanks#