Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Rightarrow2^3< 2^x\le2^4\Rightarrow x=4\\ b,\Rightarrow3^3< 3^{12}:3^x< 3^5\\ \Rightarrow3^3< 3^{12-x}< 3^5\\ \Rightarrow12-x=4\Rightarrow x=8\)
a: \(\Leftrightarrow2^3< 2^x< 2^4\)
=>3<x<4
mà x là số nguyên
nên \(x\in\varnothing\)
b: \(\Leftrightarrow3^3< 3^{12-x}< 3^5\)
=>12-x=4
hay x=8
c: \(\Leftrightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^3\cdot\left(\dfrac{2}{5}\right)^2=\left(\dfrac{2}{5}\right)^5\)
=>x>5
d: \(\Leftrightarrow3x-1=-4\)
=>3x=-3
hay x=-1
a: \(\Leftrightarrow2^3< 2^x< 2^4\)
=>3<x<4
mà x là số nguyên
nên \(x\in\varnothing\)
b: \(\Leftrightarrow3^3< 3^{12-x}< 3^5\)
=>12-x=4
hay x=8
c: \(\Leftrightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^3\cdot\left(\dfrac{2}{5}\right)^2=\left(\dfrac{2}{5}\right)^5\)
=>x>5
d: \(\Leftrightarrow3x-1=-4\)
=>3x=-3
hay x=-1
3^ x -1 = 1/243
3^x =1/243 +1
3^x = 244 / 243
Ta thấy đây ko phải lũy thừa của 3 => Ko có x thỏa mãn
81^-2x . 27^x =9^5
81^-2 . 81^x . 27^x =9^5
1/9^4 . (81.27)^x =9 ^5
3^6x = 9^5 : 1/9^4
3^6x = 9^9
3^6x = 3^18
=> 6x =18
x=3
2^x +2^x +3 =144
2.(2^x) =141
2^x+1 = 141
Ta thấy 141 ko phải lũy thừa của 2 => ko có x thỏa mãn
a. (x - 2)2 = 1
<=> (x - 2)2 = 12 = (-1)2
<=> \(\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\begin{cases}x=3\\x=1\end{cases}\)
Vậy x \(\in\){1; 3}.
b. (2x - 1)3 = -8
<=> (2x - 1)3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -2 + 1
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2.
c. (x + 1/2)2 = 1/16
<=> (x + 1/2)2 = (1/4)2 = (-1/4)2
<=> \(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)
Vậy x \(\in\){-1/4; -3/4}.
d. (x - 2)3 = -27
<=> (x - 2)3 = (-3)3
<=> x - 2 = -3
<=> x = -3 + 2
<=> x = -1
Vậy x = -1.
a.\(\left(x-2\right)^2\)=1
<=> x-2=1 hoặc x-2=-1
<=> x= 3 hoặc x=1
b.\(\left(2x-1\right)^3\)=-8
\(\left(2x-1\right)^3\)=\(\left(-2\right)^3\)
2x-1=-2
2x=-1
x=-1/2
c.\(\left(x+\frac{1}{2}\right)^2\)=\(\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2\)=\(\left(\frac{1}{4}\right)^2\)hoặc \(\left(x+\frac{1}{2}\right)^2\)=\(\left(-\frac{1}{4}\right)^2\)
x+\(\frac{1}{2}\)=\(\frac{1}{4}\) hoặc x+\(\frac{1}{2}\)=-\(\frac{1}{4}\)
x=-\(\frac{1}{4}\)hoặc x=-\(\frac{3}{4}\)
d.\(\left(x-2\right)^3\)=-27
\(\left(x-2\right)^3\)=\(\left(-3\right)^3\)
x-2=-3
x=-1
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)