K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2022

=>x^2+14x+49-x^2+3x=83

=>17x=34

=>x=2

26 tháng 10 2017

x3 - 2x2 + 6x = 12

x3 - 2x2 + 6x - 12 = 0

x2(x - 2) + 6(x - 2)=0

(x - 2)(x2 + 6) = 0

\(\Leftrightarrow \begin{bmatrix} x - 2 = 0 & & \\ x^{2} + 6 = 0& & \end{bmatrix}\) bỏ dấu ngoặc bên phải nha pn

\(\Leftrightarrow \begin{bmatrix} x = 2 & & \\ x^{2} = - 6 & & \end{bmatrix}\) không tìm được giá trị của x (pn ghi cái này kế pn chỗ x2 = - 6 nhé

Vậy x = 2

26 tháng 10 2017

\(x^3-2x^2+6x=12\)

\(\Rightarrow\) \(x^3-2x^2+6x-12=0\)

\(\Rightarrow x^2\left(x-2\right)+6\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x\in\varnothing\end{matrix}\right.\)

Vậy $x=2$

4 tháng 7 2015

x2+y2+2xy+4

=x2+2xy+y2+4

=(x+y)2+4

mà (x+y)2\(\ge\)0 => (x+y)2+4\(\ge\)4 => x^2+y^2+2xy+4>0

24 tháng 9 2019

Tính A. Câu hỏi của Nguyễn Thị Anh Thư - Toán lớp 8 - Học toán với OnlineMath

3 tháng 8 2015

i love U không giải đâu ,đừng có ****,bạn ấy luôn đi xin **** người khác mà không thèm giải bài nào

29 tháng 7 2017

\(x^2+3x+2\) =\(x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2-\frac{5}{4}\)=\(\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

Dấu "=" xảy ra <=>\(x+\frac{3}{2}=0\)<=>\(x=-\frac{3}{2}\)

Bài 2:

a) \(x^2-4x+y^2+2y+5=0\)

=> \(\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

=>\(\left(x-2\right)^2+\left(y+1\right)^2=0\)

Vì \(\left(x-2\right)^2+\left(y+1\right)^2\ge0\)nên:

=>\(\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

b)\(2x^2+y^2-2xy+10x+25=0\)

=>\(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

=>\(\left(x-y\right)^2+\left(x+5\right)^2=0\)

Tới đây thì dễ nhá !

29 tháng 7 2017

Mih nhầm nhá, câu a là -1/4 cơ nha bạn

5 tháng 6 2019

\(\frac{x^3-x^2-x-2}{x^5-3x^4+4x^3-5x^2+3x-2}\)

\(=\frac{x^3-2x^2+x^2-2x+x-2}{x^5-2x^4-x^4+2x^3+2x^3-4x^2-x^2+2x+x-2}\)

\(=\frac{\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)}{\left(x^5-2x^4\right)-\left(x^4-2x^3\right)+\left(2x^3-4x^2\right)-\left(x^2-2x\right)+\left(x-2\right)}\)

\(=\frac{x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)}{x^4\left(x-2\right)-x^3\left(x-2\right)+2x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)}\)

\(=\frac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-2\right)\left(x^4-x^3+2x^2-x+1\right)}=\frac{x^2+x+1}{x^4-x^3+2x^2-x+1}\)