Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)+x=\frac{23}{45}\)
Cho \(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\)
Ta có công thức sau: \(\frac{1}{n\cdot\left(n+1\right)}+\frac{1}{\left(n+1\right)\cdot\left(n+2\right)}=\frac{2}{n\cdot\left(n+1\right)\left(n+1\right)}\)
\(\Rightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{8\cdot9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{9\cdot10}=\frac{22}{45}\)
\(\Rightarrow A=\frac{22}{45}:2=\frac{11}{45}\)
Thay vào phép tính trên ta được:
\(\frac{11}{45}\cdot x=\frac{23}{45}\\ x=\frac{23}{45}:\frac{11}{45}\\ x=\frac{23}{11}\)
Vậy \(x=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{11}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\)
\(2A=\frac{1}{1.2}-\frac{1}{9.10}=\frac{22}{45}\)
\(A=\frac{22}{45}:2=\frac{11}{45}\)
thay A vào ta được
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}.\frac{22}{45}.x=\frac{23}{45}\)
\(\Rightarrow\frac{11}{45}.x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
Ta có:
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{8.9.10}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right):2.x=\frac{23}{45}\)
\(\Rightarrow\frac{11}{45}x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}\div\frac{11}{45}=\frac{23}{11}\)
Vậy \(x=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{8.9}+\frac{1}{9.10}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\left(\frac{1}{2}+\frac{1}{6}+....+\frac{1}{72}+\frac{1}{90}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\left(\frac{1}{2}-\frac{1}{90}\right).\frac{1}{2}.x=\frac{23}{45}\)
\(\frac{22}{45}.\frac{1}{2}x=\frac{23}{45}\)
\(\frac{11}{45}.x=\frac{23}{45}\)
\(x=\frac{23}{45}\div\frac{11}{45}\)
\(x=\frac{23}{11}\)
=> \(x=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\Rightarrow2.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{46}{45}\)
\(=\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right).x\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\right).x\)
\(=\left(\frac{1}{2}-\frac{1}{90}\right).x=\left(\frac{45}{90}-\frac{1}{90}\right)x=\frac{44}{90}.x=\frac{22x}{45}=\frac{46}{45}\)
=> 22x=46
=> x=\(46:22=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\left[\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\right]x=\frac{23}{45}\)
\(\Leftrightarrow\left[\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\right]x=\frac{23}{45}\)
\(\Leftrightarrow\left(\frac{1}{2}.\frac{44}{90}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{11}{45}x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{48}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{48}{45}\)
\(\Rightarrow\frac{22}{45}x=\frac{48}{45}\)
\(\Rightarrow x=\frac{24}{11}\)
Vậy...
\(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)x=\frac{23}{45}\)
=> \(\left[\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{8\cdot9\cdot10}\right)\right]x=\frac{23}{45}\)
=>\(\left[\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\right)\right]x=\frac{23}{45}\)
=> \(\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9\cdot10}\right)\right]x=\frac{23}{45}\)
=> \(\left[\frac{1}{2}\cdot\frac{22}{45}\right]x=\frac{23}{45}\)
=> \(\frac{11}{45}x=\frac{23}{45}\)
=> \(x=\frac{23}{45}:\frac{11}{45}=\frac{23}{45}\cdot\frac{45}{11}=\frac{23}{11}\)
Vậy x = 23/11
Ez :))