Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có :
\(\left|2x-1\right|=5\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{6}{2}\\x=\frac{-4}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
Vậy \(x=-2\) hoặc \(x=3\)
Bài 2 :
Đặt \(A=\frac{3x+4}{x-1}\) ta có :
\(A=\frac{3x+4}{x-1}=\frac{3x-3+7}{x-1}=\frac{3x-3}{x-1}+\frac{7}{x-1}=\frac{3\left(x-1\right)}{x-1}+\frac{7}{x-1}=3+\frac{7}{x-1}\)
Để A là số nguyên thì \(\frac{7}{x-1}\) phải nguyên \(\Rightarrow\)\(7⋮\left(x-1\right)\)\(\Rightarrow\)\(\left(x-1\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(x-1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(2\) | \(0\) | \(8\) | \(-6\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\) thì \(A\inℤ\)
Chúc bạn học tốt ~
câu a giống Võ Đoan Nhi
câu b:
( x2 + 2x -11 ) : ( x + 2)
=> x2 + 2x -11 : ( x + 2)
=> x(x+2) -11 : ( x + 2)
Vì x( x + 2) : ( x + 2) nên -11 : ( x + 2)
=> x + 2 thuộc ước của -11
ta lập bảng..............
\(3x+4⋮x-3\)
\(\Leftrightarrow3\left(x-3\right)+10\)\(⋮x-3\)
-Mà: \(3\left(x-3\right)⋮x-3\Rightarrow10⋮x-3\)
\(\Leftrightarrow x-3\inƯ\left(10\right)\Leftrightarrow x-3\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
-Lập bảng:.....
a; \(\dfrac{2}{3}\)\(x\) - \(\dfrac{3}{2}\)\(x\) = \(\dfrac{5}{12}\)
(\(\dfrac{2}{3}\) - \(\dfrac{3}{2}\))\(x\) = \(\dfrac{5}{12}\)
- \(\dfrac{5}{6}\)\(x\) = \(\dfrac{5}{12}\)
\(x\) = \(\dfrac{5}{12}\) : (- \(\dfrac{5}{6}\))
\(x=\) - \(\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)
b; \(\dfrac{2}{5}\) + \(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = \(\dfrac{-53}{10}\) - \(\dfrac{2}{5}\)
\(\dfrac{3}{5}\).(3\(x\) - 3,7) = - \(\dfrac{57}{10}\)
3\(x\) - 3,7 = - \(\dfrac{57}{10}\) : \(\dfrac{3}{5}\)
3\(x\) - 3,7 = - \(\dfrac{19}{2}\)
3\(x\) = - \(\dfrac{19}{2}\) + 3,7
3\(x\) = - \(\dfrac{29}{5}\)
\(x\) = - \(\dfrac{29}{5}\) : 3
\(x\) = - \(\dfrac{29}{15}\)
Vậy \(x\) \(\in\) - \(\dfrac{29}{15}\)