Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x<>-1/2
\(\dfrac{x-1}{2x+1}=\dfrac{2}{3}\)
=>\(2\left(2x+1\right)=3\left(x-1\right)\)
=>\(4x+2=3x-3\)
=>\(4x-3x=-3-2\)
=>x=-5(nhận)
b: ĐKXĐ: x<>1/2
\(\dfrac{x-2}{2x-1}=\dfrac{-1}{3}\)
=>\(3\left(x-2\right)=-1\left(2x-1\right)\)
=>\(3x-6=-2x+1\)
=>\(3x+2x=1+6\)
=>5x=7
=>x=7/5(nhận)
\(|-2x+1,5|=\dfrac{1}{4}\Rightarrow-2x+1,5=\pm\dfrac{1}{4}\)
\(-2x+1,5=\dfrac{1}{4}\Rightarrow-2x=1,5-0,25\Rightarrow-2x=1,25\Rightarrow x=1,25:\left(-2\right)\Rightarrow x=...\)
\(-2x+1,5=-\dfrac{1}{4}\Rightarrow-2x=-0,25-1,5\Rightarrow-2x=1,75\Rightarrow x=1,75:\left(-2\right)\Rightarrow x=...\)
\(\dfrac{3}{2}-|1.\dfrac{1}{4}+3x|=\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{3}{2}-\dfrac{1}{4}\Rightarrow|1.\dfrac{1}{4}+3x|=\dfrac{5}{4}\)
\(\Rightarrow1.\dfrac{1}{4}+3x=\pm\dfrac{5}{4}\)
\(1.\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=\dfrac{5}{4}\Rightarrow3x=\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=1\Rightarrow x=3\)
\(1.\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow\dfrac{1}{4}+3x=-\dfrac{5}{4}\Rightarrow3x=-\dfrac{5}{4}-\dfrac{1}{4}\Rightarrow3x=-\dfrac{3}{2}x=...\)
\(1,\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}x=6\\y=15\end{matrix}\right.\\ 2,7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{16}{-4}=-4\\ \Rightarrow\left\{{}\begin{matrix}x=-12\\y=-28\end{matrix}\right.\\ 3,\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y-z}{5-6-7}=\dfrac{36}{-8}=-\dfrac{9}{2}\\ \Rightarrow\left\{{}\begin{matrix}x=-\dfrac{45}{2}\\y=-27\\z=-\dfrac{63}{2}\end{matrix}\right.\\ 4,x:y:z=3:5:7\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x+3y-z}{6+15-7}=\dfrac{-14}{14}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-7\end{matrix}\right.\)
3. Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y-z}{5-6-7}=\dfrac{36}{-8}=\dfrac{-9}{2}\)
\(x=\dfrac{-45}{2}\)
\(y=-27\)
\(z=\dfrac{-63}{2}\)
`|2x+1|-3=x+4`
`<=>|2x+1|=x+4+3=x+7(x>=-7)`
`**2x+1=x+7`
`<=>x=7-1=6(tm)`
`**2x+1=-x-7`
`<=>3x=-6`
`<=>x=-2(tm)`
`|3x-5|=1-3x(x<=1/3)`
`**3x-5=1-3x`
`<=>6x=6`
`<=>x=1(l)`
`**3x-5=3x-1`
`<=>-5=-1` vô lý
`|2x+2|+|x-1|=10`
Nếu `x>=1`
`pt<=>2x+2+x-1=10`
`<=>3x+1=10`
`<=>3x=9`
`<=>x=3(tm)`
Nếu `x<=-1`
`pt<=>-2x-2+1-x=10`
`<=>-1-3x=10`
`<=>-11=3x`
`<=>x=-11/3(tm)`
Nếu `-1<=x<=1`
`pt<=>2x+2+1-x=10`
`<=>x+3=10`
`<=>x=7(l)`
Vậy `S={3,-11/3}`
a) \(\left|4x-1\right|-\left|3x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow\left|4x-1\right|=\left|3x-\dfrac{1}{2}\right|\\ \Leftrightarrow\left[{}\begin{matrix}4x-1=3x-\dfrac{1}{2}\\4x-1=\dfrac{1}{2}-3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x-3x=1-\dfrac{1}{2}\\4x+3x=\dfrac{1}{2}+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\7x=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{14}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{3}{14}\right\}\) là nghiệm của pt.
b) \(\left|x-1\right|-2x=\dfrac{1}{2}\\ \Leftrightarrow\left|x-1\right|=2x+\dfrac{1}{2}\left(ĐK:x\ge\dfrac{-1}{4}\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x+\dfrac{1}{2}\\x-1=-2x-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-2x=1+\dfrac{1}{2}\\x+2x=1-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=\dfrac{3}{2}\\3x=\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\left(ktmđk\right)\\x=\dfrac{1}{6}\left(tmđk\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{6}\) là nghiệm của pt.
Lời giải:
a.
$|4x-1|-|3x-\frac{1}{2}|=0$
$\Leftrightarrow |4x-1|=|3x-\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} 4x-1=3x-\frac{1}{2}\\ 4x-1=\frac{1}{2}-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{3}{14}\end{matrix}\right.\)
b. Nếu $x\geq 1$ thì:
$|x-1|-2x=\frac{1}{2}$
$\Leftrightarrow x-1-2x=\frac{1}{2}$
$\Leftrightarrow -x-1=\frac{1}{2}$
$\Leftrightarrow x=\frac{-3}{2}$ (vô lý vì $x\geq 1$)
Nếu $x< 1$ thì:
$1-x-2x=\frac{1}{2}$
$\Leftrightarrow x=\frac{1}{6}$ (tm)
\(a,7^{x+2}+2.7^{x-1}=345=>7^{x-1+3}+2.7^{x-1}=345=>7^{x-1}.7^3+2.7^{x-1}=345\)
\(=>\left(7^3+2\right).7^{x-1}=345=>345.7^{x-1}=345=>7^{x-1}=1=7^0=>x-1=0=>x=1\)
\(b,2^{x+2}-2^x=96=>2^x.2^2-2^x=96=>2^x.\left(4-1\right)=96=>2^x.3=96=>2^x=32=2^5=>x=5\)