Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
a) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
c)\(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)
d) \(x^3+x=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
e)\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
2. Tìm x:
( x - 3 )2 - x + 3 = 0
=> x2 - 6x + 9 - x + 3 = 0
=> x2 - 7x + 12 = 0
=> ( x2 - 3x ) + ( 4x - 12 ) = 0
=> x.(x - 3) + 4.(x - 3) = 0
=> ( x - 3 ).( x + 4 ) = 0
=> x - 3 = 0 => x = 3
x + 4 = 0 => x = -4
Trl:
1.
a. \(75^2+150\text{.}25+25^2\)
\(=75^2+2\text{.}75\text{.}25+25^2\)
\(=\left(75+25\right)^2\)
\(=100^2\)
\(=10000\)
b. \(2019^2-2019.19-19^2-19.1981\)
(Đề bài có sai ko vậy???)~ hoặc lak do mk ngu quá k bt lm
2. \(\left(\text{x}-3\right)^2-\text{x}+3=0\)
\(\text{x}^2-6\text{x}+9-\text{x}+3=0\)
\(\text{x}^2-7\text{x}+12=0\)
\(\text{x}^2-3\text{x}-4\text{x}+12=0\)
\(\text{x}\left(\text{x}-3\right)-4\left(\text{x}-3\right)=0\)
\(\left(\text{x}-3\right)\left(\text{x}-4\right)=0\)
\(\orbr{\begin{cases}\text{x}-3=0\\\text{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\text{x}=3\\\text{x}=4\end{cases}}}\)
Vậy ....
#HuyềnAnh#
\(x^5+x^4+1\)
\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^3.\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
cảm ơn bạn nhiều, không biết còn cách không? Mong nhận đượ giúp đỡ!
thực sự mk rất mún giúp bn nhưng mk chưa hok tới!! xin lỗi
45646565557657767876876876565657676768876334455454655454
mình giải đc phần a) thôi:
x+y=xy
<=> x+y-xy=0
<=> x(1-y)-(1-y)+1=0
<=> (1-y)(x-1)=-1
do đó: 1-y=1;x-1=-1
hoặc 1-y=-1; x-1=1
+) 1-y=1 => y=0
x-1=-1=> x=0
+) 1-y=-1 => y=2
x-1=1 => x=2
=> cặp x,y cần tìm là (0;0) và (2;2)
\(\Leftrightarrow x^2+y^2+10-2x+6y=0\)
\(\Leftrightarrow x^2-2x+1+y^2+6y+9=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)
\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)
\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)
\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)
\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)
x(x-2019)-x+2019=0
x(x-2019)-(x-2019)=0
(x-2019)(x-1)=0
\(\left[{}\begin{matrix}x-2019=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2019\\x=1\end{matrix}\right.\)
Vậy x= 2019, 1
Mình cảm ơn bạn nhiều nha