Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2-n+1:n+1\)
\(n+1:n+1\)
\(=>n.\left(n+1\right):n+1\)
\(=>n^2+n:n+1\)
\(=>\left(n^2-n+1\right)-\left(n^2+n\right):n+1\)
\(n^2-n+1-n^2-n:n+1\)
\(\left(n^2-n^2\right)-\left(n+n\right)+1:n+1\)
\(0-2n+1:n+1=>-2n+1:n+1\)
\(n+1:n+1=>2\left(n+1\right):n+1\)
\(=>2n+2:n+1\)
\(=>\left(2n+2\right)+\left(-2n+1\right):n+1\)
\(=>2n+2-2n+1:n+1\)
\(\left(2n-2n\right)+\left(2+1\right):n+1\)
\(3:n+1=>n+1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)
Ta có bảng sau
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Vậy \(n\in\left\{-4;-2;0;2\right\}\)
!
b) chịu
c)x(5y+5)+2y=-16
x(5y+5)+2(5y+5)=-80
(5y+5).(x+2)=-80
=>5y+5;x+2 \(\in\)Ư(-80)
Mà 3x+5 chia hết cho x-2 => [(3x+5)-(3x-6)] Có x-2 chia hết cho x-2 =>3x-6 chia hết cho x-2 => chia hết x-2 11 chia hết x-2 Lập bảng x-2 x 1 3 11 13 -1 1 -11 -9
tìm số nguyên x sao cho : x2+5x+7 chia hết cho x+5
mấy bạn giải nhanh giúp mình nha mình dang cần gấp
1)
Ta thấy 99 là số lẻ, 20y là số chẵn với mọi y
=> Để 6x + 99 = 20y thì 6x là số lẻ
=> x = 0
Thay x = 0 ta có 60 + 99 = 20y
=> 1 + 99 = 20y
=> 100 = 20y
=> y = 100 ; 20
=> y = 5
Vậy x = 0, y = 5
`Answer:`
2.
Ta có: \(M=1+3+3^2+3^3+3^4+...+3^{98}+3^{99}+3^{100}\)
\(=\left(1+3\right)+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2.\left(1+3+3^2\right)+...+3^{98}.\left(1+3+3^2\right)\)
\(=4+3^2.13+3^{98}.13\)
\(=4+13.\left(3^2+...+3^{98}\right)\)
Vậy `M` chia `13` dư `4`
Ta có: \(M=1+3+3^2+3^4+...+3^{99}+3^{100}\)
\(=1+\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=1+3.\left(1+3+3^2+3^3\right)+3^5.\left(1+3+3^2+3^3\right)+...+3^{97}.\left(1+3+3^2+3^3\right)\)
\(=1+3.40+3^5.40+...+3^{97}.40\)
\(=1+40.\left(3+3^5+...+3^{97}\right)\)
Mà ta thấy \(40.\left(3+3^5+...+3^{97}\right)⋮40\)
Vậy `M` chia `40` dư `1`