Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}}=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=0\)
\(\Leftrightarrow x+\frac{1}{2}-\sqrt{3}+1=0\)
\(\Leftrightarrow x=\sqrt{3}-1-\frac{1}{2}\)
\(\Leftrightarrow x=\sqrt{3}-\frac{3}{2}\)
b)\(x-5\sqrt{x}+6=0\)
\(\Leftrightarrow x-2\sqrt{x}-3\sqrt{x}+6=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}-2=0\\\sqrt{x}-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=2\\\sqrt{x}=3\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=9\end{array}\right.\)
a) \(\sqrt{x^4}=2\)( ĐK x ∈ R )
⇔ \(\sqrt{\left(x^2\right)^2}=2\)
⇔ \(\left|x^2\right|=2\)
⇔ \(\orbr{\begin{cases}x^2=2\\x^2=-2\left(loai\right)\end{cases}}\)
⇔ x2 - 2 = 0
⇔ ( x - √2 )( x + √2 ) = 0
⇔ x - √2 = 0 hoặc x + √2 = 0
⇔ x = ±√2
b) \(3\sqrt{x+1}-8=0\)( ĐK x ≥ -1 )
⇔ \(3\sqrt{x+1}=8\)
⇔ \(\sqrt{x+1}=\frac{8}{3}\)
⇔ \(x+1=\frac{64}{9}\)
⇔ \(x=\frac{55}{9}\)( tm )
c) \(2\sqrt{x-3}+\sqrt{25x-75}=14\)( ĐK x ≥ 3 ) ( Vầy hợp lí hơn á )
⇔ \(2\sqrt{x-3}+\sqrt{5^2\left(x-3\right)}=14\)
⇔ \(2\sqrt{x-3}+5\sqrt{x-3}=14\)
⇔ \(7\sqrt{x-3}=14\)
⇔ \(\sqrt{x-3}=2\)
⇔ \(x-3=4\)
⇔ \(x=7\)( tm )
d) \(\sqrt{\left(3x-1\right)^2}=5\)( ĐK x ∈ R )
⇔ \(\left|3x-1\right|=5\)
⇔ \(\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
e) \(\sqrt{x^2+4x+4}-6=0\)( ĐK x ∈ R )
⇔ \(\sqrt{\left(x+2\right)^2}=6\)
⇔ \(\left|x+2\right|=6\)
⇔ \(\orbr{\begin{cases}x+2=6\\x+2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)
\(a)\)\(\sqrt{x^4}=2\)\(\Leftrightarrow\)\(x^2=2\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy \(x=\sqrt{2}\)\(hoặc\)\(x=-\sqrt{2}\)
\(b)\)\(ĐK:x\ge0\)
\(3\sqrt{x+1}-8=0\)\(\Leftrightarrow\)\(3\sqrt{x}=8\)\(\Leftrightarrow\)\(\sqrt{x}=\frac{8}{3}\)\(\Leftrightarrow\)\(x=(\frac{8}{3})^2\)\(\Leftrightarrow\)\(x=\frac{64}{9}\)\((TM)\)
Vậy \(x=\frac{64}{9}\)
\(d)\)\(\sqrt{(3x-1)^2}=5\)\(\Leftrightarrow\)\(|3x-1|=5\)\((1)\)
- Nếu \(x\ge\frac{1}{3}\)thì \(\left(1\right)\Leftrightarrow3x-1=5\)\(\Leftrightarrow\)\(3x=6\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)
- Nếu \(x< \frac{1}{3}\)thì \((1)\Leftrightarrow-\left(3x-1\right)=5\)\(\Leftrightarrow\)\(3x-1=-5\)\(\Leftrightarrow\)\(3x=-5+1\)\(\Leftrightarrow\)\(3x=-4\)\(\Leftrightarrow\)\(x=\frac{-4}{3}\left(TM\right)\)
Vậy \(x\in\hept{2;\frac{-4}{3}}\)
- \(e)\)\(\sqrt{x^2+4x+4}-6=0\)\(\Leftrightarrow\)\(\sqrt{(x+2)^2}=6\)\(\Leftrightarrow\)\(|x+2|=6\)\(\left(2\right)\)
-Nếu \(x\ge-2\)thì \(\left(2\right)\Leftrightarrow x+2=6\Leftrightarrow x=4(TM)\)
-Nếu \(x< -2\)thì \(\left(2\right)\Leftrightarrow-\left(x+2\right)=6\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(TM\right)\)
Vậy \(x=4;x=-8\)
@@ bây giờ mới ngỡ ra
TH1:
2.|x-1| = 6
=> 2.(x-1) = 6
2x-2 = 6
2x = 6+2
x = 8
x = 8:2
x = 4
TH2:
2.|x-1| = 6
=> 2[-(x-1)] = 6
2.[-x+1] = 6
-2x+2 = 6
-2x = 6-2
-2x = 4
x = 4:(-2)
x = -2
=>\(\sqrt{4\left(X-1\right)^2}=6\Rightarrow4\left(X-1\right)^2=36\Rightarrow\left(X-1\right)^2=9\Rightarrow X-1=3\Rightarrow X=4\)
a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)
(*) \(m\ne0\) Phương trình có nghiệm
\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\)
Hệ thức Viet kết hợp 4x1 + 3x2 = 1
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)
\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)
\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)
\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
a: \(\dfrac{1}{m-2}\cdot\sqrt{m^2-4m+4}\)
\(=\dfrac{1}{m-2}\cdot\sqrt{\left(m-2\right)^2}\)
\(=\dfrac{1}{m-2}\cdot\left|m-2\right|\)
\(=\dfrac{1}{m-2}\cdot\left(m-2\right)\left(m>2\right)\)
=1
b: \(2\sqrt{x}=14\)
=>\(\sqrt{x}=7\)
=>x=49
\(x+2\sqrt{x}+1=4\)
=>\(\left(\sqrt{x}+1\right)^2=4\)
=>\(\left[{}\begin{matrix}\sqrt{x}+1=2\\\sqrt{x}+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=-3\left(loại\right)\end{matrix}\right.\)
=>x=1(nhận)
\(2P=2x^2+8y^2+\dfrac{150}{x}+\dfrac{2}{y}\)
\(=\dfrac{7}{5}x^2+7y^2+\left(\dfrac{3}{5}x^2+\dfrac{75}{x}+\dfrac{75}{x}\right)+\left(y^2+\dfrac{1}{y}+\dfrac{1}{y}\right)\)
Ta có: \(\left(5+1\right)\left(x^2+5y^2\right)\ge5\left(x+y\right)^2\Rightarrow\dfrac{7\left(x^2+5y^2\right)}{5}\ge\dfrac{7\left(x+y\right)^2}{6}\ge42\)
\(\Rightarrow2P\ge42+3\sqrt[3]{\dfrac{3.75^2.x^2}{5x^2}}+3\sqrt[3]{\dfrac{y^2}{y^2}}=90\)
\(\Rightarrow P\ge45\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(5;1\right)\)
Vì (1 - x)2 ≥ 0 ∀x nên phương trình xác định với mọi giá trị của x.
- Khi 1 – x ≥ 0 ⇔ x ≤ 1
Ta có: 2|1 – x| = 6 ⇔ 2(1 – x) = 6 ⇔ 2(1 – x) = 6
⇔ –2x = 4 ⇔ x = –2 (nhận)
- Khi 1 – x < 0 ⇔ x > 1
Ta có: 2|1 – x| = 6 ⇔ 2[– (1 – x)] = 6
⇔ x – 1 = 3 ⇔ x = 4 (nhận)
Vậy phương trình có hai nghiệm: x = - 2; x = 4