K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

a) \(\sqrt{x^4}=2\)( ĐK x ∈ R )

⇔ \(\sqrt{\left(x^2\right)^2}=2\)

⇔ \(\left|x^2\right|=2\)

⇔ \(\orbr{\begin{cases}x^2=2\\x^2=-2\left(loai\right)\end{cases}}\)

⇔ x2 - 2 = 0

⇔ ( x - √2 )( x + √2 ) = 0

⇔ x - √2 = 0 hoặc x + √2 = 0

⇔ x = ±√2 

b) \(3\sqrt{x+1}-8=0\)( ĐK x ≥ -1 )

⇔ \(3\sqrt{x+1}=8\)

⇔ \(\sqrt{x+1}=\frac{8}{3}\)

⇔ \(x+1=\frac{64}{9}\)

⇔ \(x=\frac{55}{9}\)( tm )

c) \(2\sqrt{x-3}+\sqrt{25x-75}=14\)( ĐK x ≥ 3 ) ( Vầy hợp lí hơn á )

⇔ \(2\sqrt{x-3}+\sqrt{5^2\left(x-3\right)}=14\)

⇔ \(2\sqrt{x-3}+5\sqrt{x-3}=14\)

⇔ \(7\sqrt{x-3}=14\)

⇔ \(\sqrt{x-3}=2\)

⇔ \(x-3=4\)

⇔ \(x=7\)( tm )

d) \(\sqrt{\left(3x-1\right)^2}=5\)( ĐK x ∈ R )

⇔ \(\left|3x-1\right|=5\)

⇔ \(\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

e) \(\sqrt{x^2+4x+4}-6=0\)( ĐK x ∈ R )

⇔ \(\sqrt{\left(x+2\right)^2}=6\)

⇔ \(\left|x+2\right|=6\)

⇔ \(\orbr{\begin{cases}x+2=6\\x+2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)

1 tháng 11 2020

\(a)\)\(\sqrt{x^4}=2\)\(\Leftrightarrow\)\(x^2=2\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

Vậy \(x=\sqrt{2}\)\(hoặc\)\(x=-\sqrt{2}\)

\(b)\)\(ĐK:x\ge0\)

\(3\sqrt{x+1}-8=0\)\(\Leftrightarrow\)\(3\sqrt{x}=8\)\(\Leftrightarrow\)\(\sqrt{x}=\frac{8}{3}\)\(\Leftrightarrow\)\(x=(\frac{8}{3})^2\)\(\Leftrightarrow\)\(x=\frac{64}{9}\)\((TM)\)

Vậy \(x=\frac{64}{9}\)

\(d)\)\(\sqrt{(3x-1)^2}=5\)\(\Leftrightarrow\)\(|3x-1|=5\)\((1)\)

  • Nếu \(x\ge\frac{1}{3}\)thì \(\left(1\right)\Leftrightarrow3x-1=5\)\(\Leftrightarrow\)\(3x=6\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)
  • Nếu \(x< \frac{1}{3}\)thì \((1)\Leftrightarrow-\left(3x-1\right)=5\)\(\Leftrightarrow\)\(3x-1=-5\)\(\Leftrightarrow\)\(3x=-5+1\)\(\Leftrightarrow\)\(3x=-4\)\(\Leftrightarrow\)\(x=\frac{-4}{3}\left(TM\right)\)

Vậy \(x\in\hept{2;\frac{-4}{3}}\)

  • \(e)\)\(\sqrt{x^2+4x+4}-6=0\)\(\Leftrightarrow\)\(\sqrt{(x+2)^2}=6\)\(\Leftrightarrow\)\(|x+2|=6\)\(\left(2\right)\)

                -Nếu \(x\ge-2\)thì \(\left(2\right)\Leftrightarrow x+2=6\Leftrightarrow x=4(TM)\)

                -Nếu \(x< -2\)thì \(\left(2\right)\Leftrightarrow-\left(x+2\right)=6\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(TM\right)\)

Vậy \(x=4;x=-8\)

a) Ta có: \(2\sqrt{9x-27}-\dfrac{1}{5}\sqrt{25x-75}-\dfrac{1}{7}\sqrt{49x-147}=20\)

\(\Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\)

\(\Leftrightarrow4\sqrt{x-3}=20\)

\(\Leftrightarrow x-3=25\)

hay x=28

b) Ta có: \(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\)

\(\Leftrightarrow3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\)

\(\Leftrightarrow2\sqrt{x+2}=6\)

\(\Leftrightarrow x+2=9\)

hay x=7

17 tháng 9 2021

\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

17 tháng 9 2021

\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)

 

7 tháng 8 2016

e/(x+6)(x-1)(x2+5x+16)

7 tháng 8 2016

Help me!!!