K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2015

hai số nguyên tố cùng nhau có ước chung là 1

30 tháng 12 2015

gọi ước chung của 2 số đó là d ta thấy:

7n+3 chia hết cho d nghiễn nhiên 8x(7n+3) vẫn chia hết  cho d suy ra 56n+24 chia hết cho d

8n-1............................................. 7x(8n-1)........................................... 56n-7........................

suy ra (56n+24)-(56-7)chia hết cho d

suy ra 56n+24-56n+7 chia hết cho d

suy ra (56n-56n)+24+7chia hết cho d

suy ra 0+24+7 chia hết cho d

suy ra 31 chia hết cho d

mà ước lớn nhất của 31 chính là 31 

suy ra  ƯCLN(7n+3;8n-1) =31

2.khi n=1

3.bạn tự tính nha

 

 

20 tháng 11 2015

Gọi ƯCLN(7n+3; 8n -1) = d ( d thuộc N*)
=> 7n+3 chia hết cho d
=> 8n-1 chia hết cho d
=>8(7n+3) chia hết cho d
=>7(8n-1) chia hết cho d
=>56n+24 chia hết cho d
=>56n-7 chia hết cho d
=> (56n+24) - (56n - 7) chia hết cho d
=> 31 chia hết cho d
Mà d thuộc N*
=> d thuộc { 1; 31}
Giả sử d =31
=> 7n + 3 chia hết cho 31
=> 7n+3 - 31 chia hết cho 31 ( do 31 chia hết cho 31)
=> 7n -28 chi hết cho 31
=>7(n-4) chia hết cho 31
Mà (7,31) =1
=> n-4 chia hết cho 31
=>n chia 31 dư4
=> n thuộc { 4 ; 35 ; 66 ; 97 ; ........}
Vậy để thỏa mãn  thì điều kiện của n : n từ 40 đến 90 và khác 66

 

8 tháng 2 2019

thanks

11 tháng 11 2017

ƯCLN chứ không phải UWCLN, mình nói nhầm.

25 tháng 11 2018

Gọi d là ƯC(7n + 3, 8n – 1). Suy ra:

7n + 3 ⋮ d và 8n – 1⋮d

=> 56n + 24 ⋮d và 56n – 7 ⋮ d

=> 31 ⋮ d

=> d ∈ {1; 31}Nếu 7n + 3 ⋮ 31

=> 7n + 3 – 31 ⋮ 31

=> 7n – 28 ⋮ 31

=> 7.(n – 4) 31, vì: (7, 31) = 1

=> n – 4 ⋮ 31

=> n – 4 = 31k (Với k thuộc N)

=> n = 31k + 4

Thay vào 8n – 1 = 8.(31k + 4) – 1

                           = 8.31k + 31

                           = 31.(8k + 1) 31

.=> UCLN(7n + 3, 8n – 1) = 31 nếu n = 31k + 4 (Với k thuộc N).

Với n ≠ 31k + 4 thì UCLN(7n + 3, 8n – 1) = 1 (Với k thuộc N).

Để hai số 7n + 3 và 8n – 1 là hai số nguyên tố cùng nhau

<=> UCLN(7n + 3, 8n – 1) = 1

<=> n ≠ 31k + 4 (Với k thuộc N).

Kết luận:+) Với n = 31k + 4 thì UCLN(7n + 3, 8n – 1) = 31 (Với k thuộc N)

+) Với n ≠ 31k + 4 thì UCLN(7n + 3, 8n – 1) = 1 (Với k thuộc N)+)

    Với n ≠ 31k + 4 thì hai số 7n + 3 và 8n – 1 là hai số nguyên tố cùng nhau.

                       

1 tháng 4 2020

Bạn tham khảo tại:

https://olm.vn/hoi-dap/detail/99484837437.html

-Học tốt-