K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2015

Gọi ƯCLN(2n+1;3n+1)=d

Ta có: 2n+1 chia hết cho d

3(2n+1) chia hết cho d

6n+3 chia hết cho d

có 3n+1 chia hết cho d

2(3n+1) chia hết cho d

6n+2 chia hết cho d

=>6n+3-(6n+2) chia hết cho d

(6n-6n)+(3-2) chia hết cho d

=>1 chia hết cho d hay d=1

Vậy ƯCLN(2n+1;3n+1)=d

14 tháng 11 2015

Gọi d là ƯCLN(2n+1;3n+1) (d thuộc N*)

=>2n+1 chia hết cho d=>6n+3 chia hết cho d

=>3n+1 chia hết cho d=>6n+2 chia hết cho d

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯCLN(2n+1;3n+1)=1

28 tháng 12 2017

Đặt ƯCLN ( 4n + 1 ; 3n + 1 ) = d

=> \(\hept{\begin{cases}4n+1⋮d\\3n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3.\left(4n+1\right)⋮d\\4.\left(3n+1\right)⋮d\end{cases}}\)=> \(\hept{\begin{cases}12n+3⋮d\\12n+4⋮d\end{cases}}\)=> ( 12n + 4 ) - ( 12n + 3 ) \(⋮\)d

=> 1 \(⋮\)d => d thuộc Ư ( 1 ) = { 1 }

Vậy ƯCLN ( 4n + 1 , 3n + 1 ) = 1 ( dpcm )

28 tháng 12 2017

Gọi d là ƯCLN (4n + 1, 3n + 1), d ∈ N*

\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\3n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(4n+1\right)⋮d\\4\left(3n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}12n+3⋮d\\12n+4⋮d\end{cases}}}\)

\(\Rightarrow\left(12n+4\right)-\left(12n+3\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(4n+1,3n+1\right)=1\:\)

Vậy 4n + 1 và 3n + 1 là hai số nguyên tố cùng nhau.

28 tháng 11 2014

Gọi d là ƯCLN(2n+1;3n+1)

=>2n+1 chia hết cho d và 3n+1 chia hết cho d

=>3(2n+1)chia hết cho d và 2(3n+1) chia hết cho d

=>6n+3 chia hết cho d và 6n+2 chia hết cho d

=>(6n+3)-(6n+2) chia hết cho d

=>1 chia hết cho d;ƯCLN(2n+1;3n+1)=1

=>ƯC(2n+1;3n+1)=1

28 tháng 11 2018

a,Gọi d là UCLN(2n+1;3n+2)

Ta có:

3n+2 chia hết cho d

2n+1 chia hết cho d

=> 2(3n+2)-3(n+1)=1 chia hết cho d

=> d E {-1;1}

=> 2n+1 và 3n+2 luôn nguyên  tố cùng nhau

=> BCNN(2n+1,3n+2)=(2n+1)(3n+2)  (ĐPCM)

b, Gọi a là UCLN(2n+1;9n+6)

=> 2n+1 chia hết cho a

9n+6 chia hết cho a

=> 2(9n+6)-9(2n+1) chia hết cho a

=> 3 chia hết cho a=> a E {3;-3;1;-1}

Ta có: 9n+6 thì chia hết cho 3 nhưng 2n+1 thì chưa chắc

2n+1 chia hết cho 3 <=> n=3k+1 (k E N)

Vậy: UCLN(2n+1;9n+6)=3 <=> n=3k+1

còn nếu n khác: 3k+1

=> UCLN(2n+1;9n+6)=1

11 tháng 11 2018

Gọi \(ƯC\left(2n+1;3n+2\right)=d\left(d\in N\right)\)

\(2n+1⋮d,3n+2⋮d\)

\(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(6n+4-6n-3⋮d\)

\(1⋮d\).Do đó d = 1

Vậy 2n + 1 và 3n + 2 là 2 số nguyên tố cùng nhau nên \(BCNN\left(2n+1;3n+2\right)=\left(2n+1\right)\left(3n+2\right)\)

19 tháng 10 2015

ƯC của(2n+1,3n+1)=1
 

17 tháng 2 2016

Gọi ước chung của 2n+1 và 3n+1 là d (d \(\in N\)).Ta có :

\(2n+1\in B\left(d\right)\Rightarrow3\left(2n+1\right)hay\)\(6n+3\in B\left(d\right)\)

\(3n+1\in B\left(d\right)\Rightarrow 2\left(3n+1\right)hay\)\(6n+2\in B\left(d\right)\)

=> \(\left(6n+3\right)-\left(6n+2\right)=1\)\(\in B\left(d\right)\)=> d = 1 => \(ƯC\left(2n+1;3n+1\right)=\left\{1\right\}\)