Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn kiểm tra lại đề, \(f\left(x\right)=\dfrac{x^3}{1-3x-3x^2}\) hay \(f\left(x\right)=\dfrac{x^3}{1-3x+3x^2}\)
Xét pt \(\left|x-1\right|^{2010}+\left|x-2\right|^{2011}=1\) (1)
Nhận thấy \(x=1\) và \(x=2\) là 2 nghiệm của pt
- Với \(x>2\Rightarrow\left\{{}\begin{matrix}\left|x-2\right|>0\\\left|x-1\right|>1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|^{2010}>1\\\left|x-2\right|^{2011}>0\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|^{2010}+\left|x-2\right|^{2011}>1\) nên pt vô nghiệm
- Với \(x< 1\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=\left|1-x\right|>0\\\left|x-2\right|=\left|2-x\right|>1\end{matrix}\right.\)
Tương tự như trên ta có \(\left|x-1\right|^{2010}+\left|x-2\right|^{2011}>1\) \(\Rightarrow\) pt vô nghiệm
- Với \(1< x< 2\Rightarrow\left\{{}\begin{matrix}0< \left|x-1\right|< 1\\0< \left|2-x\right|< 1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|^{2010}< \left|x-1\right|\\\left|2-x\right|^{2011}< \left|2-x\right|\end{matrix}\right.\)
\(\Rightarrow\left|x-1\right|^{2010}+\left|x-2\right|^{2011}< \left|x-1\right|+\left|2-x\right|=x-1+2-x=1\)
\(\Rightarrow\) Pt vô nghiệm
Vậy pt có đúng 2 nghiệm \(x=1\); \(x=2\)
Lần lượt thế vào \(x^2+y^2-2x=11\) để tìm y
\(f\left(x\right)=ax^2+bx+2020\\ \Leftrightarrow f\left(\sqrt{3}-1\right)=a\left(4-2\sqrt{3}\right)+b\left(\sqrt{3}-1\right)+2020=2021\\ \Leftrightarrow4a-2a\sqrt{3}+b\sqrt{3}-b-1=0\\ \Leftrightarrow\left(4a-b-1\right)-\sqrt{3}\left(2a-b\right)=0\\ \Leftrightarrow4a-b-1=\sqrt{3}\left(2a-b\right)\)
Vì a,b hữu tỉ nên \(4a-b-1;2a-b\) hữu tỉ
Mà \(\sqrt{3}\) vô tỉ nên \(\sqrt{3}\left(2a-b\right)\) hữu tỉ khi \(2a-b=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a-b-1=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
\(\Leftrightarrow f\left(1+\sqrt{3}\right)=\dfrac{1}{2}\left(4+2\sqrt{3}\right)+1+\sqrt{3}+2020=2023+2\sqrt{3}\)
Lời giải:
Theo định lý Bê-du về phép chia đa thức, số dư của $P(x)$ khi chia $2x-5$ là $P(\frac{5}{2})=\frac{5}{4}(\frac{5}{2})^3+\frac{5}{6}(\frac{5}{2})^2-\frac{21}{4}.\frac{5}{2}+\frac{1}{6}=\frac{377}{32}$
a: \(\text{Δ}=\left(-5\right)^2-4\left(-2m+5\right)\)
=25+8m-20=8m+5
Để phương trình có nghiệm kép thì 8m+5=0
=>m=-5/8
=>x^2-5x+25/4=0
=>x=5/2
b: \(\text{Δ}=\left(2m-1\right)^2-4\left(m^2-2m+3\right)\)
\(=4m^2-4m+1-4m^2+8m-12=4m-11\)
Để phương trình có nghiệm kép thì 4m-11=0
=>m=11/4
=>x^2-9/2x+81/16=0
=>x=9/4
c: TH1: m=-3
=>-(2*(-3)+1)x+(-3-1)=0
=>-(-5x)-4=0
=>5x-4=0
=>x=4/5(nhận)
TH2: m<>-3
\(\text{Δ}=\left(2m+1\right)^2-4\left(m+3\right)\left(m-1\right)\)
\(=4m^2+4m+1-4\left(m^2+2m-3\right)\)
\(=4m^2+4m+1-4m^2-8m+12=-4m+13\)
Để phương trình có nghiệm kép thì -4m+13=0
=>m=13/4
=>25/4x^2-15/2x+9/4=0
=>(5/2x-3/2)^2=0
=>x=3/2:5/2=3/2*2/5=3/5
Đặt \(Q\left(x\right)=P\left(x\right)-3x-2\)
\(\Rightarrow Q\left(1\right)=Q\left(2\right)=Q\left(4\right)=0\)
\(\Rightarrow Q\left(x\right)\) có 3 nghiệm \(x=\left\{1;2;4\right\}\)
Do \(P\left(x\right)\) bậc 4 và có hệ số cao nhất bằng 1 \(\Rightarrow Q\left(x\right)\) cũng là đa thức bậc 4 có hệ số cao nhất bằng 1
\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)\) với \(x_0\in R\)
\(\Rightarrow P\left(x\right)=Q\left(x\right)+3x+2=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)+3x+2\)
\(\Rightarrow P\left(5\right)=12\left(5-x_0\right)+17\) ; \(P\left(-1\right)=-30\left(-1-x_0\right)-1\)
\(\Rightarrow S=60\left(5-x_0\right)+85-60\left(-1-x_0\right)-2=443\)
Cám ơn thầy ạ, em xin phép gửi đến thầy đề thi chọn học sinh giỏi toán lớp 9 của thành phố Hà Nội vừa thi xong thầy ạ
le thi thu trang viết sai cấu trúc ta có phải ko nhỉ?
nhẽ ra là '' I am in grade seven'' chứ !!!!!!!!!!!!!!!!!!!!!!