K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1

\(\Leftrightarrow x^2-\left(2m-1\right)x+2m-2=0\) có 2 nghiệm pb \(x_1;x_2\) thỏa mãn \(\left|x_1-x_2\right|=5\)

\(\Delta=\left(2m-1\right)^2-4\left(2m-2\right)=4m^2-12m+9=\left(2m-3\right)^2\)

Pt có 2 nghiệm pb khi \(\left(2m-3\right)^2>0\Rightarrow m\ne\dfrac{3}{2}\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

\(\left|x_1-x_2\right|=5\Leftrightarrow\left(x_1-x_2\right)^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=25\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)=25\)

\(\Leftrightarrow\left(2m-3\right)^2=25\)

\(\Rightarrow\left[{}\begin{matrix}2m-3=5\\2m-3=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m=4\\m=-1\end{matrix}\right.\)

6 tháng 1 2021

a, Phương trình có hai nghiệm phân biệt khi \(\Delta'=\left(m+1\right)^2-\left(4m^2-2m-2\right)=-3m^2+4m+3>0\)

\(\Leftrightarrow\dfrac{2-\sqrt{13}}{3}< m< \dfrac{2+\sqrt{13}}{3}\)

b, Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'>0\\2\left(m+1\right)>0\\4m^2-2m-2>0\end{matrix}\right.\)

\(\Leftrightarrow...\)

27 tháng 12 2020

Giúp vớiiiiii

NV
7 tháng 5 2021

Pt đã cho có 2 nghiệm pb khi và chỉ khi:

\(\Delta'=\left(m+1\right)^2-\left(-2m-1\right)>0\)

\(\Leftrightarrow m^2+4m+2>0\)

\(\Rightarrow\left[{}\begin{matrix}m>-2+\sqrt{2}\\m< -2-\sqrt{2}\end{matrix}\right.\)

7 tháng 5 2021

undefined

29 tháng 5 2018

Chọn D.

Ta có:

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 3)

Vậy tập nghiệm của bất phương trình là: Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 3)

Để Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 3)

Đề kiểm tra 15 phút Đại số 10 Chương 4 có đáp án (Đề 3)

NV
23 tháng 7 2021

- Với \(m=\dfrac{1}{2}\Rightarrow\left(x+1\right)^2>0\) có tập nghiệm \(R\backslash\left\{-1\right\}\) thỏa mãn

- Với \(m>\dfrac{1}{2}\) BPT có nghiệm: \(\left\{{}\begin{matrix}x>-1\\x< -2m\end{matrix}\right.\) hay \(D=\left(-\infty;-2m\right)\cup\left(-1;+\infty\right)\)

Thỏa mãn do \(\left(1;+\infty\right)\subset\left(-1;+\infty\right)\)

- Với \(m< \dfrac{1}{2}\) BPT có nghiệm: \(\left\{{}\begin{matrix}x>-2m\\x< -1\end{matrix}\right.\) hay \(D=\left(-\infty;-1\right)\cup\left(-2m;+\infty\right)\)

Tập nghiệm của BPT chứa \(\left(1;+\infty\right)\) khi:

\(-2m\le1\Rightarrow m\ge-\dfrac{1}{2}\Rightarrow-\dfrac{1}{2}\le m< \dfrac{1}{2}\)

Kết hợp lại ta được: \(m\ge-\dfrac{1}{2}\)

28 tháng 6 2018

Chọn D

16 tháng 2 2018

(2m + 1)x + m - 5 ≥ 0 ⇔ (2m + 1)x ≥ 5 - m (*)

TH1: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Tập nghiệm của bất phương trình là:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Để bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1)

thì (0;1) Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Hay Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

TH2: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Bất phương trình vô nghiệm. ⇒ không có m .

TH3: Với Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , bất phương trình (*) trở thành: Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Tập nghiệm của bất phương trình là:

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Để bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1)

thì (0;1) Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Hay Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1)

Kết hợp điều kiện Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 1) , ⇒ không có m thỏa mãn.

Vậy với m ≥ 5, bất phương trình đã cho nghiệm đúng với ∀x ∈ (0;1).

6 tháng 8 2017

Ta có bất phương trình  x 2  - 3x + 2 ≤ 0 ⇔ 1 ≤ x ≤ 2.

Yêu cầu bài toán tương đương với bất phương trình:

m x 2  – 2(2m + 1)x + 5m + 3 ≤ 0 (1) có nghiệm x ∈ S = [1;2].

Ta đi giải bài toán phủ định là: Tìm m để bất phương trình (1) vô nghiệm trên S

Tức là bất phương trình f(x) = m x 2  - 2(2m + 1)x + 5m + 3 < 0 (2) đúng với mọi x ∈ S.

• m = 0 ta có (2) -2x + 3 < 0 ⇔ x > 3/2 nên (2) không đúng với ∀x ∈ S

• m ≠ 0 tam thức f(x) có hệ số a = m, biệt thức Δ' = - m 2  + m + 1

Bảng xét dấu

Đề thi Học kì 2 Toán 10 có đáp án (Đề 4)

a:

\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)

\(=m^2-2m+1+8m+4=m^2+6m+5\)

Để (1) vô nghiệm thì (m+1)(m+5)<0

hay -5<m<-1

Để (1) có nghiệm thì (m+1)(m+5)>=0

=>m>=-1 hoặc m<=-5 

Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0

=>m>-1 hoặc m<-5

b: Để (1) có hai nghiệm phân biệt cùng dương thì

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

NV
20 tháng 1 2022

c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)