K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2015

ta có abc^2 có tận cùng là abc nên c chỉ có thể =1;5;6

nếu c=1thi ab1^2-ab1=1000n (n là 1 số tự nhiên)

suy ra ab1(ab1-1)=1000n suy ra ab1.ab0=1000n suy ra ab1.ab=100n suy ra b=0

tức là a01.a0=100n suy ra a01.a=10n suy ra a=0 dieu vo li

tương tự với a=6 và a=5 thì ta chỉ có 1 kết quả là 625

2 tháng 6 2016

ta có abc^2 có tận cùng là abc nên c chỉ có thể =1;5;6

nếu c=1thi ab1^2-ab1=1000n (n là 1 số tự nhiên)

suy ra ab1(ab1-1)=1000n suy ra ab1.ab0=1000n suy ra ab1.ab=100n suy ra b=0

tức là a01.a0=100n suy ra a01.a=10n suy ra a=0 dieu vo li

tương tự với a=6 và a=5 thì ta chỉ có 1 kết quả là 625

8 tháng 9 2016

Ta có:

abc - cba = (n2 - 1) - (n - 2)2

=> (100a + 10b + c) - (100c + 10b + a) = n2 - 1 - [(n - 2).n - (n - 2).2]

=> 100a + 10b + c - 100c - 10b - a = n2 - 1 - n2 + 2n + 2n - 4

=> 99a - 99c = 4n - 5

=> 99.(a - c) = 4n - 5

=> 4n - 5 chia hết cho 99

Mà 99 < abc < 1000 => 99 < n2 - 1 < 1000

=> 100 < n2 < 1001

=> 10 < n < 32

=> 35 < 4n - 5 < 123

=> 4n - 5 = 99

=> 4n = 99 + 5 = 104

=> n = 104 : 4 = 26

=> abc = 262 - 1 = 676 - 1 = 675

Vậy số cần tìm là 675

8 tháng 9 2016

pn ơi sao từ 10<n<32 lai => 53<4n-5<123

21 tháng 9 2015

 

Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2) 
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99 
Vì 100 $$  abc $$ 999 nên:
100 $$ n^2 -1 $$ 999 => 101 $$ n^2 $$ 1000 => 11 $$ 31 => 39 $$ 4n - 5 $$ 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 =>  n = 26  =>  abc = 675
Thử lại thấy đúng. Vậy có một số tự nhiên có ba chữ số thoả mãn yêu cầu đề bài là 675