Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n + 108 chia hết cho 2n + 3
2n + 3 + 105 chia hết cho 2n + 3
105 chia hết cho 2n + 3
2n + 3 thuộc U(105) = {1;3;5;7;15;21;35;105}
Bạn liệt kê ra
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
\(n+6\) là bội của \(2n+5\) \(\Leftrightarrow n+6⋮2n+5\)
\(\Leftrightarrow2.\left(n+6\right)⋮2n+5\)\(\Leftrightarrow2n+12⋮2n+5\)
\(\Leftrightarrow2n+5+7⋮2n+5\)\(\Leftrightarrow7⋮2n+5\left(2n+5\inℤ\right)\)
\(\Leftrightarrow2n+5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Mà \(n\inℕ\Rightarrow2n+5=7\)\(\Leftrightarrow2n=2\Leftrightarrow n=1\)
Vậy \(n=1\)
Ta có: 18 \(⋮\)2n + 1
<=> 2n + 1 \(\in\)Ư(18) = {1; 2; 3; 6; 9; 18}
Do n \(\in\)N và 2n + 1 là số lẻ
<=> 2n + 1 \(\in\){1; 3; 9}
Với : +) 2n + 1 = 1 => 2n = 0 => n = 0
+) 2n + 1 = 3 => 2n = 2 =>n = 1
+) 2n + 1 = 9 => 2n = 8 => n = 4
Vậy ...
ai nhanh và đúng mình tích cho
TA CÓ: 2^m + 2^n = 2^m +n
=>2^m+ 2^n = 2^m x 2^n
=> 2^m x 2^n 2^m -2^n =0
=> 2^m x ( 2^n - 1) - 2^n +1 -1=0
=>2^m x (2^n-1)-(2^n-1)=0+1
=>(2^m-1)x(2^n-1)=1
=>2^m-1=1=>2^m=2=>m=1
2^n-1=1=>2^n=2=>n=1