Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(x=1\) ko thỏa mãn
- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn
- Với \(x\ge3\)
\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)
\(\Rightarrow2\left(x+y\right)⋮xy+2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)
\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)
\(\Rightarrow y=\left\{1;2;3;4\right\}\)
Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu
Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)
\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m
Tương tự...
\(x^2+y^2+2\left(x+y\right)-xy=0\)
\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)
\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)
Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm
\(x^2+y^2-2\left(x+y\right)=xy\)
\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)
Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)
Lời giải:
Với $x,y$ dương thì $\frac{2x+2y}{xy+2}$ nếu nhận giá trị nguyên thì là nguyên dương
$\Rightarrow 2x+2y\geq xy+2$
$\Leftrightarrow (x-2)(y-2)-2\leq 0(*)$
Nếu $x,y> 4$ thì $(*)$ không thể xảy ra. Do đó tồn tại ít nhất 1 số trong 2 số $\leq 4$
Giả sử $y=\min (x,y)$.
Nếu $y=1$ thì $\frac{2x+2y}{xy+2}=\frac{2x+2}{x+2}=2-\frac{2}{x+2}$ nguyên khi $x+2$ là ước của $2$. Mà $x+2\geq 3$ với mọi $x$ nguyên dương nên TH này loại
Nếu $y=2$ thì $\frac{2x+2y}{xy+2}=\frac{2x+4}{2x+2}=\frac{x+2}{x+1}=1+\frac{1}{x+1}$ nguyên khi $x+1$ là ước của $1$. Mà $x+1\geq 2$ nên TH này cũng loại nốt.
Nếu $y=3$ thì $0\geq (x-2)(y-2)-2=x-2-2=x-4$
$\Rightarrow 4\geq x$. Vì $x\geq y$ nên $x=3$ hoặc $x=4$. Thay vô phân thức ban đầu ta có $(x,y)=(4,3)$ thỏa mãn
Nếu $y=4$ thì $0\geq (x-2)(y-2)-2=2(x-2)-2$
$\Rightarrow x\leq 3$. Mà $x\geq y$ nên loại.
Vậy $(x,y)=(4,3)$ và hoán vị $(3,4)$
Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]
Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2
Thay các giá trị xx vào biểu thức ta tìm được yy
Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}
k mik nha