Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x, y là các số thực dương bất kì, theo BĐT Cô-si. Ta có:
\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\frac{1}{xy}}=4\)
\(\Rightarrow\frac{1}{x+y}\le4\left(\frac{1}{x}+\frac{1}{y}\right)\)
Áp dụng BĐT trên ta có:
\(\frac{ab}{c+1}=\frac{ab}{\left(c+a\right)\left(c+b\right)}\le\frac{ab}{4}\left(\frac{1}{c+a}+\frac{1}{c+b}\right)\)
Tương tự \(\frac{bc}{a+1}\le\frac{bc}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
Cộng theo vế ba bất đẳng thức trên ta được:
\(VT\left(1\right)\le\frac{1}{4}\left(\frac{ab+ca}{b+c}+\frac{ab+cb}{c+a}+\frac{cb+ca}{a+b}\right)=\frac{a+b+c}{4}=\frac{1}{4}\)(đpcm)
Đẳng thức xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
P/s: Bạn nói đúng, lớp 6 giải được rồi! Như mình nè , có điều không chắc thôi! =)))
a) -10 < x < 6
Các số nguyên x thỏa mãn là: -9; -8; -7; -6; -5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5
Tổng của các số nguyên thỏa mãn là: -9+(-8)+(-7)+(-6)+(-5)+(-4)+(-3)+(-2)+(-1)+1+2+3+4+5 = -30
b)
b) -1 x 4
tìm x thỏa mãn là: -1; 0;1; 2;3;4
tổng các số nguyên thỏa mãn là: -1+0+1+2+3+4=9
c)
c) -6 < x 4
tìm x thỏa mãn là: -5; -4; -3; -2; -1; 0;1;2;3;4
tổng các số nguyên thỏa mãn là:-5+( -4)+( -3)+( -2)+( -1)+ 0+1+2+3+4= -5
d) -4 < x < 4
tìm x thỏa mãn là: -3; -2; -1; 0;1;2;3
tổng các số nguyên thỏa mãn là: -3 + (-2) + (-1) + 0 +1+2+3=0
a, \(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
Tổng tất cả các số nguyên x thoả mãn là:
(-5 + 5) + (-4 +4) + (-3 +3) + (-2 +2) + (-1+1) + 0 + (-9) + (-8) + (-7) + (-6) = -30
Tương tự em làm câu b,c,d rồi đăng lên nhờ mn check nhé