Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số chính phương cần tìm là abcd=n2(n thuộc N)
Ta có: n+1 b+3 c+5 d+3 = k2(k thuộc N; k>n)
hay abcd+1353==k2
=>abcd=3136
Vậy số cần tìm là 3136
Gọi số cần tìm là:1000a+100b+10c+d(a;b;c;d nguyên dương và ≤9≤9
Có:1000a+100b+10c+d=x2
Tiếp tục có: 1000(a+1)+100(b+3)+10(c+5)+d+3=y2(x;y nguyên dương;32≤x;y≤≤99)
<=>x2+1353=y2<=>(y-x)(y+x)=1353=3.11.41
Tới đây ta giải pt tích rồi tìm ra (x;y) thoả mãn là (56;67)=>số cần tìm là 3136
Đặt abcd +k^2 -------
(a+1)(b+3)(c+5)(d+3)=m^2=>abcd +1353=m^2
Nên m^2-k^2=1353
=>(m+k)(m-k)=1353=123.11=41.33(vì k+m<200)
Đến đây làm như nghiệm nguyên để tinh m,k
Kết quả cuối cùng là 3136
Lời giải:
Gọi số cần tìm là $\overline{ab}$. Điều kiện:.......
Theo bài ra ta có:
$a+2b=12(1)$
$\overline{a0b}-\overline{ab}=180$
$\Leftrightarrow 100a+b-(10a+b)=180$
$\Leftrightarrow 90a=180$
$\Leftrightarrow a=2(2)$
Từ $(1); (2)\Rightarrow b=5$
Vậy số cần tìm là $25$
Gọi chữ số hàng chục và đvị lần lượt là x và y (0<x≤9; 0≤y≤9)
Vì chứ số hàng chục ít hơn hàng đơn vị là 2 nên ta có: y-x=2 (1)
Nếu viết thêm chữ số 1 vào giữa hai chữ số đã cho thì được số mới lớn hơn số cũ 460 đơn vị nên ta có:
100x+10+y-10x-y=460
⇔90x=450
⇔x=5
⇒y=7
Số đó là 57
Bài này không cần lập hệ bạn nhé.
gọi số có hai chữ số đó là \(\overline{ab}\) ta có
\(\hept{\begin{cases}a-b=2\\\overline{a0b}-\overline{ab}=630\end{cases}\Leftrightarrow\hept{\begin{cases}a-b=2\\100a+b-10a-b=630\end{cases}\Leftrightarrow}\hept{\begin{cases}a=7\\b=5\end{cases}}}\)
Vậy số đó là\(75\)
Gọi số đó là abcd
abcd là số chính phương nên đặt abcd = m2
Theo bài cho số (a +1)(b+3)(c+5)(d+3) là số chính phương nên đặt (a +1)(b+3)(c+5)(d+3) = n2 ( 31 < m < n < 100 do các số là đã cho là số chính phương có 4 chữ số)
Ta có: (a +1)(b+3)(c+5)(d+3) = 1000(a+1) + 100(b +3) + 10(c +5) + (d+3)
= abcd + 1000 + 300 + 50 + 3 = abcd + 1353
=> n2 - m2 = 1353
=> (n -m).(n +m)= 3.11.41 = 33.41 = 3.451 = 11.123
Do điều kiện của m; n nên 62 < m + n < 200
=> n - m = 11; n + m = 123
=>m = 56 => abcd = 3136
Vậy...