Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Hàm số f(x) có dạng f ( x ) = ( x + 2 ) ( x - 1 ) 2 Giao với trục Oy tại (0, 2) .
=> 2<m<4.
Chọn phương án D.
Đáp án D
Phương pháp:
Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1
Cách giải:
Số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)
và đường thẳng y = m + 1
Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì –2 < m+1 < 4 ó –3 < m < 3
Chọn C.
Phương pháp: Biến đổi đưa về phương trình tích.
Cách giải:
Vậy để phương trình đã cho có 4 nghiệm phân biệt thì (*) phải có 2 nghiệm phân biệt khác 2 và 3.
Ta có:
.
Số nghiệm của phương trình f x = m và số giao điểm của đồ thị hàm số y = f x và đường thẳng y = m song song với trục hoành.
Do đó để phương trình * có 4 nghiệm phân biệt thì 1 < m < 2 .
Chọn C.
Đáp án C
Phương trình ⇔ − m = x 3 − 12 x − 2 . Điều kiện trở thành đường y= m cắt đồ thị hàm số y = x 3 − 12 x − 2 tại 3 điểm phân biệt.
Lập bảng biến thiên của y = x 3 − 12 x − 2 .
Nhìn vào bảng biến thiên, điều kiện của m là − m ∈ 14 ; − 18 ⇔ m ∈ − 14 ; 18 .