K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

23 tháng 4 2018

Dựa vào bảng biến thiên hàm f(x), ta thấy để phương trình (1) có 2 nghiệm thực x phân biệt thì phương trình (2) phải có duy nhất 1 nghiệm thuộc khoảng (0;1), nghiệm còn lại (nếu có) khác 1. Số nghiệm của (2) là số giao điểm của đồ thị hàm số y = 3 5 x - 1 2  và đường thẳng y = 2 m - 1  nên điều kiện của m thỏa mãn là  0 < 2 m - 1 < 1 ⇔ 1 2 < m < 1

18 tháng 5 2018

Đáp án C

Phương pháp:

Đặt 2 x = t t > 0 , đưa về phương trình bậc 2 ẩn t, tìm điều kiện của phương trình bậc 2 ẩn t để phương trình ban đầu có 2 nghiệm phân biệt.

Cách giải: Đặt 2 x = t t > 0 khi đó phương trình trở thành  t 2 − 2 m t + m + 2 = 0 *

Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) có 2 nghiệm dương phân biệt.

Khi  đó:  Δ ' > 0 S > 0 P > 0 ⇔ m 2 − m − 2 > 0 2 m > 0 m + 2 > 0 ⇔ m > 2 m < − 1 m > 0 m > − 2 ⇒ m > 2

Chú ý và sai lm: Rất nhiều học sinh sau khi đặt ẩn phụ thì quên mất điều kiện t > 0, dẫn đến việc chỉ đi tìm điều kiện đề phương trình (*) có 2 nghiệm phân biệt.

9 tháng 3 2019

Bảng biến thiên

5 tháng 6 2019

21 tháng 2 2019

Chọn A

9 tháng 5 2019

28 tháng 4 2019

11 tháng 12 2018

12 tháng 9 2019