Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(-2\right)-f\left(1\right)=\left(-2\right)^2+2+\sqrt{2-\left(-2\right)}-\left(1^2+2+\sqrt{2-1}\right)\) \(=8-4=4\).
\(f\left(-7\right)-g\left(-7\right)=\left(-7\right)^2+2+\sqrt{2-\left(-7\right)}-\left(-2.\left(-7\right)^3-3.\left(-7\right)+5\right)=-658\)
a) \(D=(0;+\infty)\backslash\left\{1\right\}\)
b) \(D=[2;+\infty)\)
a) \(\dfrac{2}{x+1}\) xác định với x≠-1, \(\sqrt{x+3}\) xác định với x ≥ -3
Tập xác định của y = là:
D = {x ∈ R/ x + 1 ≠ 0 và x + 3 ≥ 0} = [-3, +∞)\{-1}
Có thể viết cách khác: D = [-3, -1] ∪ (-1, +∞)
b) Tập xác định
D = {x ∈ R/ 2 -3x ≥ 0} ∩ {x ∈ R/ 1-2x ≥ 0}
= [-∞, 2323 ]∩(-∞, 1212) = (-∞, 1212)
c) Tập xác định là:
D = [1, +∞) ∪ (-∞,1) = R
5,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x\left(x+y\right)\left(x+2\right)=0\\2\sqrt{x^2-2y-1}+\sqrt[3]{y^3-14}=x-2\end{matrix}\right.\)
Thay từng TH rồi làm nha bạn
3,\(hpt\Leftrightarrow\left\{{}\begin{matrix}x-y=\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}\\2y=x^3+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(1+\frac{1}{xy}\right)=0\\2y=x^3+1\end{matrix}\right.\)
thay nhá
Bài 1:ĐKXĐ: \(2x\ge y;4\ge5x;2x-y+9\ge0\)\(\Rightarrow2x\ge y;x\le\frac{4}{5}\Rightarrow y\le\frac{8}{5}\)
PT(1) \(\Leftrightarrow\left(x-y-1\right)\left(2x-y+3\right)=0\)
+) Với y = x - 1 thay vào pt (2):
\(\frac{2}{3+\sqrt{x+1}}+\frac{2}{3+\sqrt{4-5x}}=\frac{9}{x+10}\) (ĐK: \(-1\le x\le\frac{4}{5}\))
Anh quy đồng lên đê, chắc cần vài con trâu đó:))
+) Với y = 2x + 3...
1: ĐKXĐ: \(\left|x^2-4\right|+\left|x+2\right|< >0\)
\(\Leftrightarrow x\ne-2\)
2: ĐKXĐ: \(\left|x-2\right|-\left|x+1\right|< >0\)
\(\Leftrightarrow\left|x-2\right|< >\left|x+1\right|\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2< >x+1\\x-2< >-x-1\end{matrix}\right.\Leftrightarrow2x< >1\Leftrightarrow x< >\dfrac{1}{2}\)
3: ĐKXĐ: \(\left\{{}\begin{matrix}2x+11>=0\\\left\{{}\begin{matrix}3x-2< >4\\3x-2< >-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{11}{2}\\x\notin\left\{2;-\dfrac{2}{3}\right\}\end{matrix}\right.\)
a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)
=>(2x-1)(x-2)(x+1)<>0
hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)
b: ĐKXĐ: x+5<>0
=>x<>-5
c: ĐKXĐ: x4-1<>0
hay \(x\notin\left\{1;-1\right\}\)
d: ĐKXĐ: \(x^4+2x^2-3< >0\)
=>\(x\notin\left\{1;-1\right\}\)
ĐKXĐ: 1+x>=0 và 1-x>=0
=>x>=-1 và x<=1
=>-1<=x<=1
\(f\left(-x\right)=\dfrac{\sqrt{1-x}-\sqrt{1+x}}{\left|-x+2\right|-\left|-x-2\right|}=-f\left(x\right)\)
=>f(x) là hàm số lẻ
\(a.ĐKXĐ:\left\{{}\begin{matrix}\left|x\right|+4\ne0\\x-x^2\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)
TXĐ : \(D=\left[0;1\right]\)
b. ĐKXĐ: \(\left|x-3\right|+\left|x+3\right|\ne0\)
Ta có : \(\left|x-3\right|+\left|x+3\right|\ge\left|x-3-x-3\right|=6>0\)
Nên hàm số xác định với mọi x
Tập xác định \(D=R\)
c. ĐKXĐ: \(\left\{{}\begin{matrix}\left|x\right|-1\ne0\\x^2-\left|x\right|\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\\left|x\right|\left(\left|x\right|^3-1\right)\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\left|x\right|^3-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x>1\\x< -1\end{matrix}\right.\)
TXĐ : \(D=\left\{0\right\}U\left(-\infty;-1\right)U\left(1;+\infty\right)\)
\(f\left(x\right)=\dfrac{\sqrt{x^2-2}}{\sqrt{x^2-3}-1}+\dfrac{1}{\sqrt{x^2+1}+1}\)
(1) )\(x^2-2\ge0\Rightarrow\left|x\right|\ge\sqrt{2}\)
(2) \(x^2-3\ge0\Rightarrow\left|x\right|\ge\sqrt{3}\)
(3) \(\sqrt{x^2-3}-1\ne0\Rightarrow\left|x^2-3\right|\ne1\Rightarrow\left|x\right|\ne2\)
(4) \(x^2+1\ge0\Rightarrow\forall x\)
(5) \(\sqrt{x^2+1}+1\ne0\Rightarrow\forall x\)
Từ (1),(2),(3),(4) và (5):
\(\left|x\right|\ge\sqrt{3}\) và \(x\ne\left|2\right|\)
KL: \(x\le-\sqrt{3}\) và \(x\ne-2\)
Hoặc \(x\ge\sqrt{3}\) và \(x\ne2\)