Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số xác định khi \(sin\left(\dfrac{x}{2}-\dfrac{\pi}{3}\right)\ne0\)
\(\Leftrightarrow\dfrac{x}{2}-\dfrac{\pi}{3}\ne k\pi\)
\(\Leftrightarrow\dfrac{x}{2}\ne\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow x\ne\dfrac{2\pi}{3}+k2\pi\left(k\in Z\right)\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
Biểu thức g(x) = 3/(x + 2) xác định khi x + 2 ≠ 0 ⇔ x ≠ -2
TXĐ của hàm số là D = R\{-2}
Vế phải có nghĩa khi 1 ≤ x ≤ 5
Vậy giá trị lớn nhất của hàm số đã cho bằng 2 2 khi x = 3, giá trị nhỏ nhất của hàm số đã cho bằng 2 khi x = 1 hoặc x = 5.
ĐKXĐ: \(\left\{{}\begin{matrix}x\le0\\x\notin\left\{1;-1\right\}\end{matrix}\right.\)
Vậy: D=(-∞;0]\{-1}
a) Biểu thức \(2x + 3\) có nghĩa với mọi x, nên có tập xác định \(D = \mathbb{R}\)
Do đó tập giá trị của hàm số là \(\mathbb{R}\)
b) Biểu thức \(2{x^2}\) có nghĩa với mọi x, nên có tập xác định \(D = \mathbb{R}\)
Ta có: \({x^2} \ge 0\) Do đó \(y = 2{x^2} \ge 0\), tập giá trị của hàm số là \(\left[ {0; + \infty } \right)\)
7: TXĐ: \(D=R\backslash\left\{0;\dfrac{3}{2}\right\}\)
10: TXĐ: D=R\{3}
Do \(9x^2+6x+5=\left(3x+1\right)^2+4>0;\forall x\) nên hàm xác định trên R