Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x^2-2x<>0 và x^2-1>0
=>(x>1 và x<>2) hoặc x<-1
b: ĐKXĐ: x+1>0 và 5-3x>0
=>x>-1 và 3x<5
=>-1<x<5/3
c: DKXĐ: 5x+3>=0 và 3-x>0
=>x>=-3/5 và x<3
=>-3/5<=x<3
d: ĐKXĐ: 4-x^2>0 và 1+x>=0
=>x^2<4 và x>=-1
=>-2<x<2 và x>=-1
=>-1<=x<2
e: ĐKXĐ: 2-3x<>0 và 1-6x>0
=>x<>2/3 và x<1/6
=>x<1/6
f.
\(x+1>0\) và \(7-2x>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x< \dfrac{7}{2}\end{matrix}\right.\)
\(\Rightarrow\) TXĐ: \(D=(-1;\dfrac{7}{2})\)
g.
\(x+1>0\) và \(x^2-4\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x\ne2\\x\ne-2\end{matrix}\right.\)
\(\Rightarrow\) TXĐ: \(D=\left(-1;+\infty\right)\backslash2\)
h: ĐKXĐ: |x+1|-|x-2|<>0
=>|x+1|<>|x-2|
=>x-2<>x+1 và x+1<>-x+2
=>2x<>1
=>x<>1/2
g: ĐKXĐ: x+1>0 và x+2>=0 và x^2-4<>0
=>x>-2 và x>-1 và x<>2; x<>-2
=>x>-1; x<>2
f: ĐKXĐ: x+1>=0 và 7-2x>=0 và x+1<>7-2x
=>3x<>6 và -1<=x<=7/2
=>x<>2 và -1<=x<=7/2
\(a.ĐKXĐ:\left\{{}\begin{matrix}\left|x\right|+4\ne0\\x-x^2\ge0\end{matrix}\right.\Leftrightarrow0\le x\le1\)
TXĐ : \(D=\left[0;1\right]\)
b. ĐKXĐ: \(\left|x-3\right|+\left|x+3\right|\ne0\)
Ta có : \(\left|x-3\right|+\left|x+3\right|\ge\left|x-3-x-3\right|=6>0\)
Nên hàm số xác định với mọi x
Tập xác định \(D=R\)
c. ĐKXĐ: \(\left\{{}\begin{matrix}\left|x\right|-1\ne0\\x^2-\left|x\right|\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm1\\\left|x\right|\left(\left|x\right|^3-1\right)\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\left|x\right|^3-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x>1\\x< -1\end{matrix}\right.\)
TXĐ : \(D=\left\{0\right\}U\left(-\infty;-1\right)U\left(1;+\infty\right)\)
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x-1\ge0\\x-3\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge1\\x\ne3\end{matrix}\right.\) \(\Rightarrow D=[1;+\infty)\backslash\left\{3\right\}\)
b. \(D=R\)
c. \(x+3>0\Rightarrow x>-3\Rightarrow D=\left(-3;+\infty\right)\)
d. \(\left|x-2\right|\ge0\Rightarrow x\in R\Rightarrow D=R\)
a) Hàm \(y = 2{x^3} + 3x + 1\) là hàm đa thức nên có tập xác định \(D = \mathbb{R}\)
b) Biểu thức \(\frac{{x - 1}}{{{x^2} - 3x + 2}}\)có nghĩa khi \({x^2} - 3x + 2 \ne 0 \Leftrightarrow x \ne 1\)và \(x \ne 2\)
Vậy tập xác định của hàm số đã cho là \(D = \mathbb{R}/\left\{ {1;2} \right\}\)
c) Biểu thức \(\sqrt {x + 1} + \sqrt {1 - x} \) có nghĩa khi \(x + 1 \ge 0\) và \(1 - x \ge 0\), tức là \( - 1 \le x \le 1\)
Vậy tập xác định của hàm số đã cho là \(D = \left[ { - 1;1} \right]\)
d.
ĐKXĐ: \(x\left|x\right|-4>0\)
\(\Leftrightarrow x\left|x\right|>4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)
e.
ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)
Ta có:
\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)
\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)
f.
ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)
Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)
Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)
Kết hợp với \(x\ge-2\Rightarrow x>-2\)
Lời giải:
a. ĐKXĐ: $x^3-x\neq 0$
$\Leftrightarrow x(x-1)(x+1)\neq 0$
$\Leftrightarrow x\neq 0;\pm 1$
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{0;\pm 1\right\}\)
b.
ĐKXĐ: \(\left\{\begin{matrix} x\geq 0\\ |x|-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq \pm 1\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x\neq 1\end{matrix}\right.\)
TXĐ:
\([0;+\infty)\setminus \left\{1\right\}\)
c.
ĐKXĐ: \(x^2-1\neq 0\Leftrightarrow x\neq \pm 1\)
TXĐ: \(\mathbb{R}\setminus \left\{\pm 1\right\}\)
a: TXĐ: D=R\{1}
b: TXĐ: D=[-2;2]\{0}