K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Gọi x,y,zx,y,z là các cạnh của tam giác vuông (1≤x≤y<z)(1≤x≤y<z). Ta có :

                          x2+y2=z2(1)x2+y2=z2(1)

                          xy=2(x+y+z)(2)xy=2(x+y+z)(2)

Từ (1)(1) ta có :

z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4z2=(x+y)2−2xy=(x+y)2−4(x+y+z)⇒(x+y)2−4(x+y)+4=z2−4z+4

                                                            ⇒(x+y−2)2=(z+2)2⇒(x+y−2)2=(z+2)2 

                                                            ⇒x+y−2=z+2(x+y≥2)⇒x+y−2=z+2(x+y≥2)

Thay z=x+y−4z=x+y−4 vào (2)(2) ta được :

            (x−4)(y−4)=8(x−4)(y−4)=8

⇔x−4=1;y−4=8⇔x−4=1;y−4=8 hoặc x−4=2;y−4=4x−4=2;y−4=4

⇔x=5;y=12⇔x=5;y=12 hoặc x=6;y=8x=6;y=8

10 tháng 11 2017

a) Ta có: \(y^2=1+x+x^2+x^3+x^4\)

\(\Leftrightarrow4y^2=4+4x+4x^2+4x^3+4x^4\)

\(\Rightarrow4x^4+4x^3+x^2< 4y^2\le4x^4+x^2+4+4x^3+8x^2+4x\)

\(\Rightarrow\left(2x^2+x\right)^2< 4y^2\le\left(2x^2+x+2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}4y^2=\left(2x^2+x+1\right)^2\\4y^2=\left(2x^2+x+2\right)^2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{cases}}\)

đến đây xét từng trường hợp là ra 

9 tháng 11 2017

b) Do \(13x^2\ge0\)nên \(24y^2\le2015\)

\(\Rightarrow y^2\le83\)

Đến đây xét các trường hợp của y là được

9 tháng 11 2017

a)  http://olm.vn/hoi-dap/question/1058362.html

NV
25 tháng 3 2022

Gọi độ dài 1 cạnh góc vuông là x (với 0<x<14)

Độ dài cạnh còn lại là: \(14-x\)

Do tích độ dài 2 cạnh là 48 nên ta có pt:

\(x\left(14-x\right)=48\)

\(\Leftrightarrow x^2-14x+48=0\Rightarrow\left[{}\begin{matrix}x=6\\x=8\end{matrix}\right.\)

Độ dài cạnh huyền là: \(\sqrt{6^2+8^2}=10\)

23 tháng 7 2016

 Ta có 
AM -AH =BC/2 - AH =7 
=> BC -2AH =14 
=> 2AH = BC-14 (1*) 

Mặt khác: 
AB+BC+CA= 72 
=> AB+CA = 72-BC 
=> (AB+AC)^2 = (72-BC)^2 

=> AB^2 + CA^2 + 2BC.AH = 72^2 - 144BC + BC^2 (do AB.AC = BC.AH) 

=> 2BC.AH = 5184 - 144BC (2*) 

Thay (1*) vào (2*) 

=> BC(BC-14) = 5184 - 144BC 
=> BC^2 + 130BC - 5184 =0 
=> sqrt(delta) =194 
=> BC = (-130 + 194)/2 = 32 
=> AH = (BC-14)/2 = 9 
=> S(ABC) =BC.AH/2 = 144 cm^2

30 tháng 7 2017

Gọi a;b là độ dài 2 cạnh góc vuông. Do tam giác vuông; ta có: 

Độ dài cạnh huyền = √(a²+b²) 

Độ dài đường cao = ab/√(a²+b²) 


Do đó chu vi = a+b+√(a²+b²) = 72 (1) 


Hiển nhiên trung tuyến phải dài hơn đường cao nên ta có: 

1/2.√(a²+b²) -ab/√(a²+b²) = 7 

<=> (a²+b²) -2ab = 14√(a²+b²) (2) 


Kết hợp (1) và (2) ta được: 

a²+b² -2ab = 14.(72-a-b) 

<=> a²+b² +14a +14b -1008 = 2ab 

<=> (a+b)² +14(a+b) -1008 = 4ab (3) 


Từ (1) ta có: 

√(a²+b²) = 72-a-b 

<=> a²+b² = a²+b²+5184 -144a-144b +2ab 

<=> 144(a+b) = 2ab +5184 

<=> a+b = ab/72 +36 (4) 


Thay (4) vào (3) ta được: 

(ab/72 +36)² +14.(ab/72 +36) -1008 = 4ab 

<=> (ab +2592)² + 14.72.(ab+2592) -1008.72² = 4.72²ab 

<=> (ab)² +5184(ab) +2592² +1008(ab) -4.72²(ab) +14.72.2592 -1008.72² =0 

<=> (ab)² -14544(ab) +4105728 =0 

<=> (ab -14256)(ab -288) =0 


Thử lại: 

Nếu: ab = 14256 thì a+b = 14256/72 +36 = 234 

Giải pt: X² -234X +14256 =0 

Ta thấy: Δ' = 117²-14256 = -567 <0 nên pt vô nghiệm 


Nếu: ab = 288 thì a+b = 288/72 +36 = 40 

Giải pt: X² -40X² +288 =0 

Ta được: X1 = 20 -4√7 ; X2 = 20 +4√7 

Đây là độ dài 2 cạnh góc vuông. Từ đây tính được cạnh huyền và đường cao thấy thỏa gt. 


Kết luận: Tam giác đã cho có diện tích là 144 (=ab/2)

29 tháng 4 2017

ai trả lời nhanh nhất mk tk cho