K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

11 tháng 6 2021

A B C 6 10 H D M N

a, Xét tam giác ABC vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm

* Áp dụng hệ thức : 

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm

* Áp dụng hệ thức : 

\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm 

\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm 

Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm 

Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2

11 tháng 6 2021

b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )

\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)

\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm 

\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm 

Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có : 

\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm

22 tháng 7 2018

a, \(\Delta ABC,\hat{BAC}=90^o\)

\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)

\(\Leftrightarrow10^2=6^2+AC^2\)

\(\Leftrightarrow AC^2=64\)

\(\Leftrightarrow AC=8\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:

\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)

Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)

Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)

22 tháng 7 2018

2 câu kia mình nghĩ sau

16 tháng 9 2023

Điểm H nằm ở đâu vậy ? 

a: AB=căn 5^2-4^2=3cm

Xét ΔABC vuông tại A có AH là đường cao

nên AB^2=BH*BC; AC^2=CH*BC; AH*BC=AB*AC

=>AH=3*4/5=2,4cm; BH=3^2/5=1,8cm

CH=5-1,8=3,2cm

b: C=3+4+5=12cm

S=1/2*3*4=6cm2

AM=BC/2=2,5cm

c: MA=MC=2,5cm

AC=4cm

ΔMAC cân tại M có MI là đường cao

nên I là trung điểm của AC

=>IA=IC=AC/2=2cm

MI=căn MA^2-IA^2=1,5cm