Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/n+6 = 5/(n+1)+5 ; 6/n+7 = 6/(n+1)+6 ; 7/n+8 = 7/(n+1)+7 ; ... ; 31/n+32 = 31/(n+1)+31
Ta thấy mỗi phân số trên đều có dạng a/(n+1)+a, để các phân số trên đều tối giản thì (n+1,a)=1
=> ta phải tìm n để n+1 nguyên tố với 5; 6; 7; ...; 31
Mà n nhỏ nhất => n+1 nhỏ nhất => n+1=37
=> n=37-1=36
Vậy số nhỏ nhất cần tìm là 36
Ủng hô mk nha ^_^
Phân số đã cho có dạng : \(\frac{a+n+4}{a}\)với a=3;4;5;6;7
Do đó muốn các phân số trên tối giản thì (a+n+4) phải không chia hết cho 3;4;5;6;7 và ƯCLN(a+n+4;a) = 1 và n+4 là số nguyên tố
\(\Rightarrow\)n+4=11(vì 11 là số nguyên tố có 2 chữ số nhỏ nhất
\(\Rightarrow n=7\)
Vậy n=7
ta thay
p/s da cho co dang
5/5+(n+3):6/6+(n+3)........17/17+(n+3)
tuc la a/a+(nn+3)
de cac p/s toi gian thi a va n+3 phai la nguyen to cung nhau
=>n+3 pha nho nhat va nguyen to cung nhau voi cac so 5;5;5...17
=>n+3 phai la nguyen to nho nhat < 17
=>n+3=19
=>n=16
vay so tu nhien N=16
Ta thấy các phân số đã cho có dạng: \(\frac{5}{5+\left(n+3\right)};\frac{6}{6+\left(n+3\right)};...\)
Tức là có dạng: \(\frac{a}{a+\left(n+3\right)}\)
=> Để phân số tối giản thì a và n + 3 phải là nguyên tố cùng nhau
=> n + 3 phải nhỏ nhất và nguyên tố cùng nhau với các số 5;6;7...;17
=> n + 3 phải là số nguyên tố nhỏ nhất lớn hơn 17
=> n + 3 = 19
=> n = 16
Vậy n nhỏ nhất thỏa mãn các phân số tối giản là n = 16
Để phân số \(\frac{3}{n}\)tối giản thì 3\(⋮̸\)n
\(\Rightarrow\)n bằng 3k+1 hoặc bằng 3k+2 với k\(\in\)N*
Vậy n bằng 3k+1 hoặc 3k+2 với k là số tự nhiên khác 0.
Các phần sau tương tự.
(Đây là bài tớ tự nghĩ để làm nên trình bày có thể không rõ lắm, nếu thấy vậy bạn bảo nhé!)