Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: \(x\ge5\)
\(\dfrac{4\left(x-1\right)!}{4!.\left(x-5\right)!}-\dfrac{4\left(x-1\right)!}{3!\left(x-4\right)!}< \dfrac{5\left(x-2\right)!}{\left(x-4\right)!}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-4\right)}{6}-\dfrac{2\left(x-1\right)}{3}< 5\)
\(\Leftrightarrow x^2-9x-22< 0\)
\(\Rightarrow-2< x< 11\)
\(\Rightarrow x=\left\{5;6;7;8;9;10\right\}\)
\(\Leftrightarrow\dfrac{\left(n+5\right)!}{5!.n!}=\dfrac{\left(n+3\right)!.5}{n!}\)
\(\Leftrightarrow\left(n+5\right)\left(n+4\right)=5!.5=600\)
\(\Leftrightarrow n^2+9n-580=0\Rightarrow n=20\)
ĐK: \(x\ge4\)
\(\dfrac{\left(x-2\right)!}{\left(x-4\right)!}+\dfrac{x!}{\left(x-2\right)!.2!}=101\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)+\dfrac{x\left(x-1\right)}{2}=101\)
\(\Leftrightarrow3x^2-11x-190=0\)
\(\Rightarrow x=10\)