K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

ldhkjsrsu

9 tháng 4 2018

Xét x=0 thì 1+1=1\(\Rightarrow\)2=1(vô lí)

Xét x=1 thì 3+4=5\(\Rightarrow\)7=5(vô lí)

Xét x=2 thì 32+42=52\(\Rightarrow\)9+16=25(thỏa mãn)

Xét x>2 thì \(\frac{3^x+4^x}{5^x}=1\Rightarrow\frac{3^x}{5^x}+\frac{4^x}{5^x}=1\Rightarrow\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)

Vì x>2 nên \(\left(\frac{3}{5}\right)^x< \left(\frac{3}{5}\right)^2;\left(\frac{4}{5}\right)^x< \left(\frac{4}{5}\right)^2\)\(\Rightarrow\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x< \left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=\frac{3^2+4^2}{5^2}=1\)(vô lí)

Vậy x=2 thỏa mãn

5 tháng 11 2019

Ta có:

xy+4x=35+5y

\(\Leftrightarrow\)x(y+4)=20+15+5y

\(\Leftrightarrow\)x(y+4)=5(y+4)+15

\(\Leftrightarrow\)x(y+4)+5(y+4)=15

\(\Leftrightarrow\)(x+5)(y+4)=15

Ta có bảng:

x+5-15-5-3-113515
y+4-1-3-5-1515531
x-20-10-8-6-4-2010
y-5-7-9-19111-1-3

Vậy................

5 tháng 11 2019

<=>xy+4x-5y=35
<=>xy+4x-5y-20=15
<=> x(y+4) -5(y+4)=15=1.15=(-1)(-15)=3.5=.....
Ta có bảng.....
k nhé :3

9 tháng 4 2018

Ta có:\(\left|19x+5y\right|+1975=\left|19y+5x\right|+2014^x\)

\(\Leftrightarrow\left|19x+5y\right|-\left|19y+5x\right|=2014^x-1975\)

Vì \(19x+5y-\left(19y+5x\right)=19x+5y-19y-5x=14x-14y⋮2\)

nên \(\left|19x+5y\right|-\left|19y+5x\right|⋮2\)\(\Rightarrow2014^x-1975⋮2\)

\(\Rightarrow2014^x\) lẻ\(\Rightarrow x=0\)

Thay x=0 vào ta có:\(\left|5y\right|-\left|19y\right|=-1974\)

\(y\ge0\) nên \(\hept{\begin{cases}5y\ge0\\19y\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|5y\right|=5y\\\left|19y\right|=19y\end{cases}}\)\(\Rightarrow5y-19y=-1974\)

\(\Rightarrow-14y=-1974\Rightarrow y=141\)

Vậy x=0,y=141 thỏa mãn

13 tháng 6 2019

\(\left|19x+5y\right|+1975=\left|19y+5x\right|+2014^x\)

\(\Leftrightarrow1975-2014^x=\left|19y+5x\right|-\left|19x+5y\right|\)

\(\Leftrightarrow1975-2014^x=\left(\left|19y+5x\right|+19y+5x\right)-\left(\left|19x+5y\right|+19x+5y\right)-14\left(x+y\right)\left(1\right)\)

Ta có bổ đề:\(\left|a\right|+a\) là số chẵn với \(\forall a\in Z\)

\(\Rightarrow\left(1\right)\)chẵn/\(\Rightarrow2014^x\) lẻ \(\Rightarrow x=0\)

Thay \(x=0\) vào \(pt\) và kết hợp với \(x,y\in N\) thì tìm được \(x=0;y=141\)

29 tháng 6 2015

\(a\text{)}\)

\(A=x^2+4x-5=\left(x-1\right)\left(x+5\right)\)

\(\text{Nếu }x\text{ là số tự nhiên lẻ thì }x=2n+1\text{ (}n\in N\text{ )}\)
\(\text{Khi đó: }A=\left(2n+1-1\right)\left(2n+1+5\right)=2n.\left(2n+6\right)=4n\left(n+3\right)\)

\(n\text{ chẵn thì }n\left(n+3\right)\text{ chẵn }\Rightarrow n\left(n+3\right)\text{chia hết cho 2 }\Rightarrow4n\left(n+3\right)\text{ chia hết cho 8}\)

\(n\text{ lẻ thì }n+3\text{ chẵn }\Rightarrow n\left(n+3\right)\text{ chia hết cho 2 }\Rightarrow4n\left(n+3\right)\text{ chia hết cho 8}\)

Ta có đpcm.

\(\text{b)}\)

\(x^2+65=y^2\)\(\Rightarrow y^2-x^2=65\Leftrightarrow\left(y+x\right)\left(y-x\right)=65.1=13.5\)

\(\text{Do }x,y\text{ nguyên nên }y+x;y-x\text{ nguyên}\)

\(\text{Mà }y+x>y-x>0\text{ nên ta có:}\)

\(\text{+TH1: }y+x=65\text{ và }y-x=1\Leftrightarrow x=32;y=33\)

\(\text{+TH2:}y+x=13\text{ và }y-x=5\Leftrightarrow x=4;y=9\)

\(\text{Vậy }x\in\left\{4;32\right\}\text{ thì }x^2+65\text{ là số chính phương.}\)