Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
co 2n+1chia het cho n+1
suy ra 2 (n+1)-1 chia het cho n+1
suy ra 1 chia het cho n+1 (vi 2(n+1) chia het cho n+1)
suy ra n+1=1
suy ra n=0
Ta có: n+3⋮n+1
ta có n+1⋮n+1n+1⋮n+1
mà n+3⋮n+1n+3⋮n+1
\Rightarrow n+3-\left(n+1\right)⋮n+1⇒n+3−(n+1)⋮n+1
\Rightarrow n+3-n-2⇒n+3−n−2 ⋮n+1⋮n+1
\Rightarrow⇒ 22 ⋮n+1⋮n+1
\Rightarrow n+1\in\text{Ư}_{\left(2\right)}=\text{ }\left\{1;2\right\}⇒n+1∈Ư
(2)= {1;2}
nếu n+1=1\Rightarrow n=0n+1=1⇒n=0 ( thỏa mãn )
nếu n+1=2\Rightarrow n+1n+1=2⇒n+1 ( thỏa mãn )
vậy n\in\text{ }\left\{0;1\right\}n∈ {0;1}
b)Ta có:
4n+ 3⋮⋮ 2n+ 1.
Ta có: 2n+ 1⋮⋮ 2n+ 1.
=> 2( 2n+ 1)⋮⋮ 2n+ 1.
=> 4n+ 2⋮⋮ 2n+ 1.
Mà 4n+ 3⋮⋮ 2n+ 1.
=>( 4n+ 3)-( 4n+ 2)⋮⋮ 2n+ 1.
=> 4n+ 3- 4n- 2⋮⋮ 2n+ 1.
=> 1⋮⋮ 2n+ 1.
=> n= 1.
Vậy n= 1.
Tick cho mình nha!
Ta có: 3n+2=3n-3+2+3
Vì (n-1) nên 3(n-1) ⋮ (n-1)
Do đó(3n+2) ⋮ (n-1) khi 5 ⋮ (n-1)
=>(n-1)ϵ Ư(5)={-1;-5;1;5}
=>n ϵ {2;6} vì n-1=1=>n=2
n-1=5=>n=6
Vậy n={2;6}
ta có :số chia hết cho cả 2 và 3 là số chia hết cho 6
các số chia hết cho 6 trong khoảng từ 50 đến 200 là :
A={54;60;66;...;192;198}
A có :(198-54):6+1=25(số hạng)
vậy có 25 số chia hết cho cả 2 và 3 trong khoảng từ 50 đến 200
Ta có: abc = 100 . a + 10 . b + c = n2 - 1 (1)
cbd = 100 . c + 10 . b + a = n2 - 4n + 4 (2)
Lấy (1) - (2) ta được: 99 . (a - c) = 4n - 5
=> 4n - 5 chia hết cho 99
Vì:
100 =< abc =< 999 nên:
100 =< n2 - 1 =< 999 => 101 =< n2 =< 1000 => 11 =< 31 => 39 =< 4n - 5 =< 119
Vì: 4n - 5 chia hết cho 99 nên 4n - 5 = 99 => n = 26 => abc = 675 (thỏa, mãn yêu cầu của đề bài)
P/s: dấu =< này là bé hơn hoặc bằng nhé
mình chỉ nhớ mỗi kết quả thôi chứ quên cách giải rồi, kết quả là 102
Gọi a là số cần tìm. Ta có: a + 3 chia hết cho 5 và 7. Suy ra:
\(a\in BC\left(5,7\right)=\left\{0;35;70;105;140;...\right\}\)
Vậy a = 105.
Ta có 2n+1=2(n-3)+7
Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3
Vì 2(n-3) chia hết cho n-3
=> 7 chia hết cho n-3
n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4
Nếu n-3=-1 => n=2
Nếu n-3=1 => n=4
Nếu n-3=7 => n=10
Ta có : \(2n+1⋮n-3\)
\(=>2n-6+7⋮n-3\)
\(Do:2n-6⋮n-3\)
\(=>7⋮n-3\)
\(=>n-3\inƯ\left(7\right)\)
Nên ta có bảng sau :
n-3 | 7 | 1 | -7 | -1 |
n | 10 | 4 | -4 | 2 |
Vậy ...
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)