K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:  

\(BCNN\left(4;5;6\right)=60.\)

\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)

\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)

\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)

Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301 

2 tháng 8 2017

Số cần tìm là 301

11 tháng 7 2016

Gọi số tự nhiên cần tìm là : x ( x thuộc N* ; 200 < x < 400)

Khi đó :

x chia 4 dư 3 => x + 1 chia hết cho 4

x chia 5 dư 4 => x + 1 chia hết cho 5

x chia 6 dư 5 = > x + 1 chia hết 6

Nên x + 1 thuộc BC(4;5;6) và 201 < (x + 1) < 401

=> BCNN(4;5;6) = 60

=> BC(4;5;6) = B(60) = {0;60;120;180;240;300;360}

Vậy x + 1 = {240;300;360}

=> x ={239;299;359}

10 tháng 11 2017

bai nay tớ làm qua rồi nên giải phái của bạn hoàng là đúng

27 tháng 10 2017

Bài 1:  Gọi số cần tìm là a.  \(\left(a\in N,a< 400\right)\)

Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.

Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60

Vậy a có dạng 60k + 1.

Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)

Do a chia hết 7 nên ta suy ra a = 301

Bài 2. 

 Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.

Số đó lại chia hết cho 7 nên ta tìm được các số là :

7.7 = 49 (Thỏa mãn)

7.17 = 119 (Chia 3 dư 2 - Loại)

7.27 = 189 (Chia hết cho 3  - Loại)

7.37 = 259 ( > 200 - Loại)

Vậy số cần tìm là 49.

18 tháng 11 2017

  a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6) 

=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65 

mặt khác a chia hết cho 7 => a = 7m 

Vậy 7m = 60n + 1 

có 1 chia 7 dư 1 
=> 60n chia 7 dư 6 
mà 60 chia 7 dư 4 
=> n chia 7 dư 5 
mà n chỉ lấy từ 1 đến 6 => n = 5 

a = 60.5 + 1 = 301

23 tháng 11 2017

i do not know