Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b
x chia hết cho 12
x chia hết cho 25
=> x thuộc BC(12 , 25)
12 = 2^2.3 ; 25 = 5^2
=> BCNN(12,25) = 2^2.3.5^2 = 300
B(300) = {0;300;600;....}
Vậy x = 300
a) Ta sẽ tìm BC của 18 và 12 : BC (18,12)= {36; 72;108;144;...} ->(Khoảng cách giữa các bội chung là 36 đơn vị )
b) Ta sẽ tìm bội của 60 : B(60) = {60;180;240;300;360;420;480;540;600;660;720;780;... }
Và 750 > x > 200 nên x sẽ thỏa mãn bằng 240;300;360;420;480;540;600;660 và 720
K mk nha, mk nhanh nhất 100% đấy nha
a) x chia hết cho 8 => x thuộc bội của 8
=> B(8) = { 0 ; 16 ; 24 ; ....... }
x chia hất cho 12 => x thuộc B của 12
=> B (12)={ 0 ; 24 ; 36 ; ....... }
b) x chia hết cho 60 và ( 750 > x > 200 )
=> B(60) = { 0 ; 120 ; 180 ; 240 ; 300 ; ............. }
mà 750 > x > 200
=> x = { 240 ; 300 ; 360 ; 420 ; 480 ; 540 ; 600 }
nha bn
A.
( 2x + 1 )( y - 5 ) = 12
Ta có bảng sau :
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
y-5 | 12 | -12 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
x | 0 | -1 | 0,5 | -1,5 | 1 | -2 | 1,5 | -2,5 | 2,5 | -3,5 | 5,5 | -6,5 |
y | 17 | -7 | 11 | -1 | 9 | 1 | 8 | 2 | 7 | 3 | 6 | 4 |
Vì x , y thuộc N => ( x ; y ) = { ( 0 ; 17 ) , ( 1 ; 9 ) }
B.
4n - 5 chia hết cho 2n - 1
=> 2( 2n - 1 ) - 3 chia hết cho 2n - 1
=> 3 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(3) = { ±1 ; ±3 }
2n-1 | 1 | -1 | 3 | -3 |
n | 1 | 0 | 2 | -1 |
Vì n là số tự nhiên => n = { 1 ; 0 ; 2 }
a) Giả sử \(x^2+x⋮̸9\)
\(\Rightarrow x^2+x=x\left(x+1\right).x\left(x+1\right)⋮̸9\)
\(\Rightarrow x^2+x+1⋮̸9\)
\(\Rightarrow dpcm\)
b) \(x^2+x+1=3^y\)
\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)
Ta thấy \(x\left(x+1\right)\) là số chẵn
\(\left(1\right)\Rightarrow3^y-1\) là số chẵn
\(\Rightarrow y\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1\left(x\inℕ\right)\\y=2k+1\left(k\inℕ\right)\end{matrix}\right.\) thỏa đề bài
Đính chính
a) Giả sử \(x^2+x\) \(⋮̸9\)
\(\Rightarrow x^2+x=x\left(x+1\right)\) \(⋮̸9\)
\(\Rightarrow x\left(x+1\right).x\left(x+1\right)\) \(⋮̸9\)
\(\Rightarrow x^2+x+1\) \(⋮̸9\)
b) \(x^2+x+1=3^y\)
\(\Rightarrow x\left(x+1\right)=3^y-1\left(1\right)\)
mà \(\left\{{}\begin{matrix}x\left(x+1\right)\\3^y-1\end{matrix}\right.\) là số chẵn
\(\left(1\right)\Rightarrow\) \(\left\{{}\begin{matrix}x\left(x+1\right)=3^y-1=2k\\\forall x;y;k\inℕ\end{matrix}\right.\)