Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$
a) x chia 8;12;16 dư 2
=>x-2 chia hết cho 8;12;16
mà 8=2^3
12=2^2x3
16=2^4
=> BCNN(8;12;16)=2^4x3=48
=>x-2 thuộc B(48)=[48;96;144;....]
x=[50;98;146;....]
mà x nhỏ nhất có 2 chữ số =>a=50
b) ta có a chia 12 dư 11
a chia 15 dư 14
=> a+1 chia hết cho 12 và 15
=> a+1 thuộc BC(12;15)
mà 12=2^2x3
15=3x5
=>BCNN(12;15)=2^2X3X5=60
=> a+1 thuộc B(60)=[60;120;180;.....]
a=[59;119;179;....]
mà a nhỏ nhất =>a=59
c) x chia 50;38;25 dư 12
=> x-12 chia hết cho 50;38;25
mà 50=2x5^2
38=2x19
25=5^2
=>BCNN(50;38;25)=2x5^2x19=950
=>a-12 thuộc B(950)=[950;1900;2850;....]
a=[962;1912;2862;....]
mà a bé nhất =>a=962
nhớ tick cho mình đấy
b) Theo đề bài, A : 12,15 (dư lần lượt là 11 và 14)
Vậy (A+1) chia hết cho 12,15
BCNN của 12,15 là:
\(\hept{\begin{cases}12=2^2\times3\\15=3\times5\end{cases}}\Rightarrow BCNN=2^2\times3\times5=60\)
Vậy a=60-1=59
Học tốt nha ^-^
Gọi số phải tìm là a ( \(100\le a\le999\)
a chia 12 dư 8 nên \(a-8⋮12\Rightarrow a+36-8⋮12\Rightarrow a+28⋮12\)
a chia 20 thiếu 8 nên\(a+8⋮20\Rightarrow a+20+8⋮20\Rightarrow a+28⋮20\)
\(\Rightarrow a+28\in BC\left(12,20\right)=B\left(60\right)=\left\{0;60;120;180....\right\}\)
vì a là số nhỏ nhất có 3 chữ số nên thử lần lượt các giá trị ta có: \(a+28=180\Rightarrow a=152\)
Ta gọi số đó là a (a thuộc N)theo đề bài ta có a chia cho 2;3;4;5;6; đều dư 1 (1).Vậy a-1 chia hết cho 2;3;4;5;6 mà đề bài bảo rằng số đó là số nhỏ nhất (2).Từ (1) và (2) ta suy ra a-1 là BCNN(2;3;4;5;6) mà BCNN(2;3;4;5;6) là 60 . Ta thấy đề bài nói số đố phải chia hết cho 7 nên a-1 chia hết cho 7. Ta lấy 60.7=420. Vậy a=420+1=421.Vậy số ta cần tìm là 421 (Chúc bạn học tốt nhé)
Gọi số đó là a với a ∈ N*. Ta có:
a : 8 dư 7 => a+1 ⋮8 (1)
a : 12 dư 11 => a + 1⋮12 (2)
Từ (1) và (2) => a +1 ∈ BCNN(8;12)=24
=> a = 23.Vậy số đó bằng 23
Gọi x là số cần tìm (x ∈ ℕ*)
Do khi chia x cho 8 dư 7, chia x cho 12 dư 11 và x nhỏ nhất
⇒ x + 1 = BCNN(8; 12)
8 = 2³
12 = 2².3
⇒ x + 1 = BCNN(8; 12) = 2³.3 = 24
⇒ x = 24 - 1
⇒ x = 23
Vậy số cần tìm là 23