Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a,b,c,d là các chữ số
=> d<10
=> 0<a<3
mà 4 là số chẵn
=> dcba là số chẵn
=> a chẵn
=> a = 2
ta có 4. 2bcd = dcb2
=> d có thể nhận các giá trị 8 hoặc 9
mà một số có tận cùng là 8 nhân với 4 sẽ được số tận cùng là 2
=> d = 8
ta có 4. 2bc8 = 8cb2
<=> 4. (2000 + 100b + 10c + 8) = 8000 + 100c + 10b + 2
<=> 8000 + 400b + 40c + 32 = 8000 + 100c + 10b + 2
<=> 60c - 390b = 30
<=> 2c - 13b = 1
<=> 13b + 1 = 2c
mà 2c < 20
=> 13b < 19
=> b < 2
2c là số chẵn => b lẻ
=> b = 1
=> c = 7
thử lại thấy thỏa mãn
vậy số cần tìm là 2178
Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)
từ (gt) db¯+c=b^2+ d (2)
=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9
+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)
+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7
Thay vào (2) ta đc c = 9
Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9
=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn
tìm số có 4 chữ số abcd thỏa mãn đồng thời 2 điều kiện sau
a, ab, ad là hai số nguyên tố
b, db+c=b2+d
mk viết thiếu xin lỗi nha
a,\(\sqrt{ab},\sqrt{cd}\)là hai số nguyên tố
b, \(\sqrt{ab}+c=b^2+d\)
bạn nào trả lời được mk cho 6 tích
các bạn giúp mk nha
........................
Do ab¯,ad¯ là các số nguyên tố nên b và d là các số lẻ khác 5 (1)
từ (gt) db¯+c=b^2+ d (2)
=> 10d+b+c=b^2 + d
=> 9d+c=b^2−b=b(b−1)
VT lớn hơn hoặc bằng 9 nên từ VP => b>3 mà b lẻ khác 5 nên b chỉ có thể bằng 7 hoặc 9
+Với b = 7 thì 9d+c=42 => 3<d<5 trái với (1)
+Với b= 9 thì 9d +c= 72 => 7<hoac = d<hoac=8, mà d lẻ nên d = 7
Thay vào (2) ta đc c = 9
Do a9¯, a7¯ cùng nguyên tố nên a chỉ có thể nhận các giá trị tương ứng 1,2,5,7,8 hoặc 1,3,4,6,9
=> a = 1 và abcd¯ = 1997, thử lại thấy thỏa mãn
1: Ta có:ABCD là hình chữ nhật
nên AB=CD;AD=BC
2: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Xét ΔADE và ΔCBF có
\(\widehat{D}=\widehat{B}\)
AD=CB
\(\widehat{DAE}=\widehat{BCF}\)
Do đó: ΔADE=ΔCBF
Suy ra: \(\widehat{AED}=\widehat{CFB}\)
=>\(\widehat{AEC}=\widehat{CFA}\)
Xét tứ giác AECF có
\(\widehat{AEC}=\widehat{CFA}\)
\(\widehat{FAE}=\widehat{FCE}\)
Do đó: AECF là hình bình hành
Suy ra: AE//CF