K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 10 2021

Lời giải:
Từ đề bài, kết hợp với $2n+1> n-1$ ta có các TH sau đây:

TH1: 

$2n+1=3; n-1=p$

$\Rightarrow n=1; n-1=p\Rightarrow p=0$ (vô lý)

TH2: $2n+1=p, n-1=3\Rightarrow p=9$ (loại)

TH3: $2n+1=3p; n-1=1$

$\Rightarrow 3p=5$ (loại)

Vậy không tồn tại $n,p$ thỏa đề.

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

27 tháng 12 2018
Gọi d€ƯC(2n+3;4n+1) =>2n+3:d=>2(2n+1):d =>4n+1:d=>4n+1:d =>[2(2n+3)-4n+1]:d =>(4n+6-4n+1):d =>5:d =>d€Ư(5)={1;5} Với d=5=>2n+3:5 =>(2n+3-5):5 =>(2n-2):5 =>2(n-1):5 =>n-1:5(vì 2 không chia hết cho 5) =>n-1=5k(k€N*) =>n=5k-1 Thay n=5k+1 vào 4n+1=4.(5k+1)+1 =20k+4+1 =20k+5 Vậy n khác 5k+1 thì 2n+3 và 4n+1 là nguyên tố cùng nhau
16 tháng 8 2015

gọi d là ước chung lớn nhất của 2n + 3 và 4n + 1

ta có : 2n + 3 : hết cho d , 4n + 1 : hết cho d

=> 2( 2n + 3) : hết cho d , 4n + 1 : hết cho d

=> ( 4n + 6) - ( 4n + 1) : hết cho d

=> 5 : hết cho d

=> d \(\varepsilon\){ 5}

mà 4n + 1 ko : hết cho 5

=> 4n : hết cho 5

=> n : hết cho 5

=> n \(\varepsilon\)5k

15 tháng 12 2017

gọi d là ước chung lớn nhất của 2n + 3 và 4n + 1
ta có : 2n + 3 : hết cho d , 4n + 1 : hết cho d
=> 2( 2n + 3) : hết cho d , 4n + 1 : hết cho d
=> ( 4n + 6) - ( 4n + 1) : hết cho d
=> 5 : hết cho d
=> d ε{ 5}
mà 4n + 1 ko : hết cho 5
=> 4n : hết cho 5
=> n : hết cho 5
=> n ε 5k

chúc bn hok tốt @+_@