K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

2n-3=2n+2-5 => 2n+2 thuộc Ư(5)

Ư(5)={1;5}

TH1: 2n+2=1

2n=-1( loại)

TH2: 2n+2=5

2n= 3 => n=1,5

4 tháng 2 2016

phân số nào vậy bn

4 tháng 2 2016

mình ghi thiếu, phân số là \(\frac{2n-3}{2n+2}\)

4 tháng 2 2016

​Để 2n - 3 / 2n + 2 là phân số tối giản thì ƯC ( 2n - 3 , 2n + 2 ) = 1

​=> 2n - 3 và 2n + 2 là hai số nguyên tố cùng nhau

 

​Làm đến đây mik xin chịu

AH
Akai Haruma
Giáo viên
19 tháng 11 2023

Lời giải:
Gọi $d=ƯCLN(18n+3, 21n+7)$

$\Rightarrow 18n+3=3(6n+1)$ và $21n+7=7(3n+1)$ cùng chia hết cho $d$

Để phân số rút gọn được, tức là $3(6n+1)$ và $7(3n+1)$ phải cùng chia hết cho 1 số $d>1$

Mà $(3,7)=1$ nên $6n+1\vdots d$ và $3n+1\vdots d$

$\Rightarrow 2(3n+1)-(6n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $(18n+3, 21n+7)=1$, tức là không tồn tại $n$ tự nhiên để phân số có thể rút gọn.

15 tháng 3 2020

Mọi người ghi cả cách giải nhé

13 tháng 4 2017

n khác 2k -1

17 tháng 12 2017

a) (n+3) Chia hết cho (n-1)

Ta có : (n+3)=(n-1)+4

Vì (n-1) chia hết cho (n-1) 

Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)

=> n-1 thuộc Ư(4)={1;2;4}

n-1     1          2             4

n         2          3            5

Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)

b)(4n+3) chia hết cho (2n+1)

Ta có : (4n+3)=2n.2+1+2

Vì (2n+1) chia hết cho (2n+1)

Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)

=> 2n+1 thuộc Ư(3)={1;3}

2n+1                 1              3 

2n                    0               2

n                      0              1

Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)