Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để 8n+193/4n+3 thuộc
=> 8n+193 chia hết 4n+3
=> 2(4n+3)+187 chia hết 4n+3 mà 2(4n+3)chia hết 4n+3
=> 4n+3 thuộc ước 187
rồi tự làm tiếp
a)\(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{n+3}\)
=>n+3 thuộc Ư(187)
n+3 | 1 | -1 | 17 | -17 | 187 | -187 |
n | -2 | -4 | 14 | -20 | 184 | -190 |
mk nhầm
4n+3 thuộc Ư(187)
4n+3 | 1 | -1 | 17 | -17 | -187 | 187 |
n | -2 | -1 | 3,5 loại | -5 | -47,5 loại | 46 |
\(\frac{8n+193}{4n+3}=\frac{4n+4n+3+3+187}{4n+3}=\frac{\left(4n+3\right)+\left(4n+3\right)+187}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để \(2+\frac{187}{4n+3}\) là số nguyên <=> \(\frac{187}{4n+3}\) là số nguyên
=> 4n + 3 ∈ Ư ( 187 )
Gọi d là ước chung nguyên tố của 8n+193 và 4n+3(d\(\in\)N)
=>\(\left\{\begin{matrix}8n+193⋮d\\4n+3⋮d\end{matrix}\right.\) =>\(\left\{\begin{matrix}8n+193⋮d\\8n+6⋮d\end{matrix}\right.\) =>187\(⋮\) d
=>d\(\in\)nguyên tố của 187
=> d\(\in\left\{1;11;17\right\}\)
để (8n+193;4n+3)=1=> d= 1
=> d\(\ne\)11 và 17
=> \(\left\{\begin{matrix}4n+3⋮̸11\\4n+3⋮̸17\end{matrix}\right.\) =>4n-3-11 ko chia hết cho 11 và 4n-3-51ko chia hết cho 17
=>\(\left\{\begin{matrix}4n-8⋮̸11\\4n-48⋮̸17\end{matrix}\right.\)=>\(\left\{\begin{matrix}4\left(n-2\right)⋮̸11\\4\left(n-12\right)⋮̸17\end{matrix}\right.\) =>\(\left\{\begin{matrix}n-2⋮̸11\\n-12⋮̸17\end{matrix}\right.\)
=>\(\left\{\begin{matrix}n-2\ne11k\\n-12\ne17k\end{matrix}\right.\)=>\(\left\{\begin{matrix}n\ne11k+2\\n\ne17k+12\end{matrix}\right.\)
Vậy n\(\ne\)11k+2 và n\(\ne\)17k+12
a, A= 10^2015+8/9
=1000...08/9 ( 2015 chữ số 0)
Tử có tổng các chữ số bằng 1+8=9 chia hết cho 9
<=>A là 1 số tự nhiên
a) Gọi ƯCLN ( 8n + 193; 4n + 3) = d
=> ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)
=> ( 8n+193 ) - ( 8n + 6 ) : d
=> 187 : d mà A là phân số tối giản => A ≠ 187
=> n ≠ 11k + 2 (k ∈ N)
=> n ≠ 17m + 12 (m ∈ N )
b) n = 156 => A = 77/19
n = 165 => A = 89/39
n = 167 => A = 139/61