Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{A}{B}=\dfrac{3}{2}x^{n-4}y^{6-n}-\dfrac{5}{2}x^{n-2}y^{4-n}\)
Để A chia hết cho B thì n-4>=0; 6-n>=0; n-2>=0; 4-n>=0
=>n=4
b: \(\dfrac{A}{B}=\dfrac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)
Để A chia hết cho B thì n-3>=0; 5-n>=0; 4-n>=0
=>n>=3; n<=4
=>3<=n<=4
\(\left(5x^3-7x^2+x\right):3x^n=\frac{5}{3}x^{3-n}-\frac{7}{3}x^{2-n}+\frac{1}{3}x^{1-n}\)
Để \(\left(5x^3-7x^2+x\right)⋮3x^n\) thì các số mũ của phần biến phải không âm, do đó :
\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)
\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)
\(1-n\ge0\)\(\Leftrightarrow\)\(n\le1\)
Mà \(n\inℕ\) nên \(0\le n\le1\)\(\Rightarrow\)\(n\in\left\{0;1\right\}\)
\(\left(13x^4y^3-5x^3y^3+6x^2y^2\right):5x^ny^n=\frac{13}{5}x^{4-n}y^{3-n}-x^{3-n}y^{3-n}+\frac{6}{5}x^{2-n}y^{2-n}\)
Để \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)⋮5x^ny^n\) thì các số mũ của phần biến phải không âm, do đó :
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(3-n\ge0\)\(\Leftrightarrow\)\(n\le3\)
\(2-n\ge0\)\(\Leftrightarrow\)\(n\le2\)
Mà \(n\inℕ\) nên \(0\le n\le2\)\(\Rightarrow\)\(n\in\left\{0;1;2\right\}\)
Chúc bạn học tốt ~
Để A chia hết cho B thì
\(\hept{\begin{cases}2\le n-1\\4\ge n\end{cases}}\)
<=> \(3\le n\le4\)
Vậy n cần tìm là 3
Để A : B thì (7xn-1y5-5x3y4): x2yn => 7xn-1y5 : x2yn và 5x3y4:x2yn
=>
*)n-1>=2; 5>=n;
nên n>=3; 5>=n hay 3<=n<=5(1)
*)4>=n(2)
Từ (1);(2) => 3<=n<=4 mà n lẻ nên n=3
Vậy để A : B thì n=3
Vì để 1 đơn thức chia hết cho 1 đơn thức khác thì số mũ của mỗi biến trong đơn thức bị chia này phải lớn hơn hoặc bằng số mũ của mỗi biến tương ứng trong đơn thức chia
Bài 1:
Đặt G(x)=0
\(\Leftrightarrow3\cdot\left(5x-1\right)\left(3x-1\right)=0\)
=>(5x-1)(3x-1)=0
=>5x-1=0 hoặc 3x-1=0
=>x=1/5 hoặc x=1/3
Ta có :
\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)
Để A chia hết cho B thì tất cả số mũ của phần biến phải không âm
\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)
\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)
\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
Từ những dữ kiện trên \(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)
Vậy \(n=4\)
Chúc bạn học tốt ~
\(\left(3x^{n-1}y^6-5x^{n+1}y^4\right):2x^3y^n=\frac{3}{2}x^{n-4}y^{6-n}-\frac{5}{2}x^{n-2}y^{4-n}\)
Để \(\left(3x^{n-1}y^6-5x^{n+1}y^4\right)⋮2x^3y^n\) thì các số mũ của phần biến phải không âm, do đó :
\(n-4\ge0\)\(\Leftrightarrow\)\(n\ge4\)
\(6-n\ge0\)\(\Leftrightarrow\)\(n\le6\)
\(n-2\ge0\)\(\Leftrightarrow\)\(n\ge2\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(\Rightarrow\)\(4\le n\le4\)\(\Rightarrow\)\(n=4\)
\(\left(7x^{n-1}y^5-5x^3y^4\right):5x^2y^n=\frac{7}{5}x^{n-3}y^{5-n}-xy^{4-n}\)
Để \(\left(7x^{n-1}y^5-5x^3y^4\right)⋮5x^2y^n\) thì các số mũ của phần biến phải không âm, do đó :
\(n-3\ge0\)\(\Leftrightarrow\)\(n\ge3\)
\(5-n\ge0\)\(\Leftrightarrow\)\(n\le5\)
\(4-n\ge0\)\(\Leftrightarrow\)\(n\le4\)
\(\Rightarrow\)\(3\le n\le4\)\(\Rightarrow\)\(n\in\left\{3;4\right\}\)
Chúc bạn học tốt ~