Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(9n+24; 3n+4) là d. Ta có:
9n+24 chia hết cho d
3n+4 chia hết cho d => 9n+12 chia hết cho d
=> 9n+24-(9n+12) chia hết cho d
=> 12 chia hết cho d
=> d thuộc Ư(12)
=> d thuộc {1; -1; 3; -3; 4; -4; 12; -12}
Giả sử ƯCLN(9n+24; 3n+4) khác 1
=> 3n+4 chia hết cho 4
=> 3n+4-4 chia hết cho 4
=> 3n chia hết cho 4
=> nchia hết cho 4
=> n = 4k
=> Để ƯCLN(9n+24; 3n+4) = 1 thì n \(\ne\) 4k
1.c)1. Xét n chẵn, hai số đều chẵn → không nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24=3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
→k cũng là ước số của (3n+8)−(3n+4)=4 ->chẵn (b)
Từ (a) và (b)→ Mâu thuẫn
Vậy với nn lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
Đặt d là ước nguyên tố của 2n - 1 và 9n + 4
=> 2n - 1 chia hết cho d ; 9n + 4 chia hết cho d
2n - 1 chia hết cho d => 9( 2n - 1 ) chia hết cho d => 18n - 9 chia hết cho d
9n + 4 chia hết cho d => 2( 9n + 4 ) chia hết cho d => 18n + 8 chia hết cho d
=>( 18n + 8 ) - ( 18n - 9 ) chia hết cho d
=>18n + 8 - 18n + 9 chia hết cho d
=> 17 chia hết cho d => d thuộc ước của 17 mà ước của 17 là 1;17
\(\frac{\left(-3\right)^n}{81}=-27\)
\(\left(-3\right)^n=-2187=\left(-3\right)^7\)
=> n = 7
\(a,\frac{16}{2^n}=2=>\frac{2^4}{2^n}=2=>2^4:2^n=2=>2^{4-n}=2=>4-n=1=>n=3\)
\(b,\frac{\left(-3\right)^n}{81}=-27=>\frac{\left(-3\right)^n}{3^4}=\left(-3\right)^3=>\frac{\left(-3\right)^n}{\left(-3\right)^4}=\left(-3\right)^3=>\left(-3\right)^{n-4}=\left(-3\right)^3=>n-4=3=>n=7\)
\(c,8^n:2^n=4=>\left(8:2\right)^n=4=>4^n=4=>n=1\)
+ ta có
5n^3 - 9n^2 + 15n - 27 = (5n - 9)(n^2 + 3)
- với n = 0 ta có 5n^3 - 9n^2 + 15n - 27 = -27 loại
- với n = 1 ta có 5n^3 - 9n^2 + 15n - 27 = -16 loại
- với n = 2 ta có 5n^3 - 9n^2 + 15n - 27 = 7 nhận
- với n > 2 ta có 5n - 9 > 1 và n^2 + 3 > 7 => không thể là số nguyên tố
Vì n2 + 81 là số chính phương => n2 + 81 = m2 ( m thuộc N )
=> m2 - n2 = 81
<=> (m + n)(m - n) = 81
=> (m + n)(m - n) = 1.81 = 3.27 = 9.9
Với m + n = 1 thì m - n = 81
=> m = 1 - n
<=> 1 - n - n = 81
<=> 2n = - 80
=> n = - 40 loại vì n thuộc N
........
tự liệt kê rồi tìm nha
\(\frac{\left(-3\right)^n}{81}=-27\)
=> (-3)n = -27.81
=> (-3)n = -(27.81)
=> (-3)n = -(33.34)
=> (-3)n = -37 = (-3)7
=> n = 7
Vậy n = 7
\(\frac{\left(-3\right)^n}{81}=-27\)
\(\left(-3\right)^n:81=-27\)
\(\left(-3\right)^n=-27\cdot81\)
\(\left(-3\right)^n=-2187\)
\(\left(-3\right)^n=\left(-3\right)^7\)
\(=>n=7\)
mk ghi lại đề nha:
27n : 9n = 927 : 81
(27 : 9)n = 927 : 92
\(\Rightarrow\) 3n = 925
\(\Rightarrow\) 3n = (32)25
\(\Rightarrow\) 3n = 350
Vậy n = 50
\(27^n.9^n=9^{27}:81\Rightarrow3^{3n}:3^{2n}=3^{54}:3^4=3^{50}\)
\(\Rightarrow3^{5n}=3^{50}\Rightarrow5n=50\Rightarrow n=\frac{50}{5}=10\)
\(27^n.9^n=9^{27}:81\)
\(3^{3n}.3^{2n}=3^{54}:3^4\)
\(3^{5n}=3^{50}\)
=> 5n = 50
=> n = 10