Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(n\ge5\):
\(1!+2!+3!+4!+5!+...+n!\equiv\left(1!+2!+3!+4!\right)\left(mod10\right)\equiv3\left(mod10\right)\)
Vì \(k!=1.2.3.....k=\left(2.5\right).1.3.4.6.....k\)(Với \(k\ge5\))
mà số chính phương không thể có tận cùng là \(3\)nên loại.
Tính trực tiếp với các trường hợp \(n=1,2,3,4\)ta được \(n=1\)và \(n=3\)thỏa mãn.
Gọi A(n) = 1 + 2
Với n = 1 => A1 = 1 = 1 = là một số chính phương
=>n = 1 (TM)
Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương
=>n = 2 (KTM)
Với n = 3 => A3 = =1 + 2 + 6 = 9 = là một số chính phương
=>n = 3 (TM)
Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương
Với n
Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5
Nên n có chữ số tận cùng là 3
Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9
=>n = 5(KTM)
Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương
Gọi A(n) = 1 + 2
Với n = 1 => A1 = 1 = 1 = là một số chính phương
=>n = 1 (TM)
Với n = 2 => A2 = 1 = 1 + 2 =3 ko là một số chính phương
=>n = 2 (KTM)
Với n = 3 => A3 = =1 + 2 + 6 = 9 = là một số chính phương
=>n = 3 (TM)
Với n = 4 => A4 = 1 = 1 + 2 + 6 + 24 =33 không là mọt số chính phương
Với n
Vì 51.2.3.4.5 =1.3.4.10 có chữ số tận cùng là 5
Nên n có chữ số tận cùng là 3
Mà một số chính phương có chữ số tận cùng là:0;1;4;5;6;9
=>n = 5(KTM)
Vậy n = 1 hoặc n = 3 thì 1 là một số chính phương
ban gop lai cac so le thi no chinh la so chinh phuong
1+3=2^2
suy ra n la so le
Ta có: A = 28 + 211 + 2n = 28.(1 + 23 + 2n-8) = (23)2.(1 + 2.22.1 + 24 +2n-8 - 24) = (23)2.((1 + 22)2 + 2n-8 - 24)
=> A là số chính phương <=> 2n-8=24=> n-8=4=> n=12
Ta có: A = 28 + 211 + 2n = 28.(1 + 23 + 2n-8) = (23)2.(1 + 2.22.1 + 24 +2n-8 - 24) = (23)2.((1 + 22)2 + 2n-8 - 24)
=> A là số chính phương <=> 2n-8=24=> n-8=4=> n=12
Gọi số cần tìm là a
Suy ra (a+2) chia hết cho cả 3,4,5,6
Vậy (a+2) là Bội chung của 3,4,5,6
=>(a+2)=60k (với k thuôc N)
vì a chia hết 11 nên
60k chia 11 dư 2
<=>55k+5k chia 11 dư 2
<=>5k chia 11 dư 2
<=>k chia 11 dư 7
=>k=11d+7 (với d thuộc N)
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)
Vì n2 + 81 là số chính phương => n2 + 81 = m2 ( m thuộc N )
=> m2 - n2 = 81
<=> (m + n)(m - n) = 81
=> (m + n)(m - n) = 1.81 = 3.27 = 9.9
Với m + n = 1 thì m - n = 81
=> m = 1 - n
<=> 1 - n - n = 81
<=> 2n = - 80
=> n = - 40 loại vì n thuộc N
........
tự liệt kê rồi tìm nha
ta thấy 81=92 => là số chính phương
=>Để n2+81 là 1 số chính phương thì n=0 ( thỏa mãn yêu cầu là số tự nhiên )