K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2019

\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{n\left(n+2\right)}=\frac{5}{36}\)

\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\right)=\frac{5}{36}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{18}\)

\(\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)

\(\frac{1}{n+2}=\frac{1}{18}\)

\(\Rightarrow n+2=18\Rightarrow n=16\)

29 tháng 4 2019

\(\Rightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}=\frac{10}{36}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{18}\)

\(\Rightarrow\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)

\(\Rightarrow\frac{n+2-3}{3\left(n+2\right)}=\frac{5}{18}\)

\(\Rightarrow\frac{n-1}{3n+6}=\frac{5}{18}\)

\(\Rightarrow18\left(n-1\right)=5\left(3n+6\right)\)

\(\Rightarrow18n-18=15n+30\)

\(\Rightarrow3n=48\)

\(\Rightarrow n=48:3\)

=>n=16

hơi khó đó tick mình nha Hoàng Thu Hà

2 tháng 8 2017

Đề bị sai 

2 tháng 8 2017

Sửa đề . \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{n\left(n+2\right)}=\frac{71}{216}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}\right)=\frac{71}{216}\)

\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{n+2}\right)=\frac{71}{216}\)

\(\Leftrightarrow\frac{1}{n+2}=1-\frac{71}{216}\div\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{n+2}=\frac{37}{108}\)

\(\Leftrightarrow x=\frac{34}{37}\Rightarrow\text{(đề sai) }\)

23 tháng 4 2017

= 2 x [1 - 1/3 + 1/3 - 1/5 + 1/5 -1/7 +1/7 -1/9 + .., +1/99 - 1/101

= 2 x [ 1 - 1/101 ]

= 2 x 100/101

= 200/101

t cho mik nha

23 tháng 4 2017

   \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+.........+\(\frac{2}{99.101}\)

=\(\frac{1}{1}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+....+\(\frac{1}{99}\)-\(\frac{1}{101}\)

= 1 - \(\frac{1}{101}\)\(\frac{100}{101}\)

11 tháng 11 2016

Đặt A = \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{5}{31}\)

  2A   = \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

  2A   = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{\left(2x+1\right)}-\frac{1}{2x+3}=\frac{10}{31}\)

  2A   = \(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

  Ta có :  \(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

                           \(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)

                          \(\frac{1}{2x+3}=\frac{1}{93}\)

=> 2x + 3 = 93

     2x       = 90

       x       = 45