Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: E đối xứng A qua B
=>B là trung điểm của AE
=>\(\left\{{}\begin{matrix}x_A+x_E=2\cdot x_B\\y_A+y_E=2\cdot y_B\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_E+1=2\cdot\left(-2\right)=-4\\y_E+2=2\cdot6=12\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_E=-4-1=-5\\y_E=10\end{matrix}\right.\)
Vậy: E(-5;10)
b: A(1;2); B(-2;6); C(9;8)
\(AB=\sqrt{\left(-2-1\right)^2+\left(6-2\right)^2}=\sqrt{3^2+4^2}=5\)
\(AC=\sqrt{\left(9-1\right)^2+\left(8-2\right)^2}=\sqrt{8^2+6^2}=10\)
\(BC=\sqrt{\left(9+2\right)^2+\left(8-6\right)^2}=\sqrt{11^2+2^2}=\sqrt{125}=5\sqrt{5}\)
Vì \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
Xét ΔCAB có CI là phân giác
nên \(\dfrac{IA}{IB}=\dfrac{CA}{CB}=\dfrac{10}{5\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)
=>\(\dfrac{IA}{IB+IA}=\dfrac{2}{2+\sqrt{5}}\)
=>\(\dfrac{IA}{BA}=\dfrac{2}{\sqrt{5}+2}\)
=>\(AI=2\left(\sqrt{5}-2\right)\cdot AB\)
\(\overrightarrow{AI}=\left(x-1;y-2\right);\overrightarrow{AB}=\left(-3;4\right)\)
I nằm giữa A và B nên \(\overrightarrow{AI};\overrightarrow{AB}\) cùng hướng
=>\(\overrightarrow{AI}=\left(2\sqrt{5}-4\right)\cdot\overrightarrow{AB}\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)=\left(2\sqrt{5}-2\right)\cdot\left(-3\right)=-6\sqrt{5}+6\\y-2=\left(2\sqrt{5}-2\right)\cdot4=8\sqrt{5}-8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-6\sqrt{5}+7\\y=8\sqrt{5}-6\end{matrix}\right.\)
a) Để tìm tọa độ điểm E đối xứng với A qua B, ta sử dụng công thức tọa độ điểm đối xứng:
- X = 2x' - x
- Y = 2y' - y
Với A(1, 2) và B(-2, 6), ta có:
- X = 2 * (-2) - 1 = -5
- Y = 2 * 6 - 2 = 10
Vậy tọa độ của điểm E là E(-5, 10).
b) Để tìm tọa độ điểm I chân đường phân giác trong tại đỉnh C của tam giác ABC, ta sử dụng công thức:
- X = (ax + cx) / 2
- Y = (ay + cy) / 2
Với A(1, 2), B(-2, 6) và C(9,😎, ta có:
- X = (1 + 9) / 2 = 5
- Y = (2 +😎 / 2 = 5
Vậy tọa độ của điểm I là I(5, 5).
a) \(\overline A \): “\(\frac{5}{{1,2}}\) không là một phân số”.
Đúng vì \(\frac{5}{{1,2}}\) không là phân số (do 1,2 không là số nguyên)
b) \(\overline B \): “Phương trình \({x^2} + 3x + 2 = 0\) vô nghiệm”.
Sai vì phương trình \({x^2} + 3x + 2 = 0\) có hai nghiệm là \(x = - 1\) và \(x = - 2\).
c) \(\overline C \): “\({2^2} + {2^3} \ne {2^{2 + 3}}\)”.
Đúng vì \({2^2} + {2^3} = 12 \ne 32 = {2^{2 + 3}}\).
d) \(\overline D \): “Số 2 025 không chia hết cho 15”.
Sai vì 2025 = 15. 135, chia hết cho 15.
\(PT\left(T\right)\) có dạng \(x^2+y^2-2ax-2by+c=0\)
\(\left\{{}\begin{matrix}A\left(-1;2\right)\in\left(T\right)\\B\left(1;2\right)\in\left(T\right)\\C\left(2;-3\right)\in\left(T\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+2^2-2a-4b+c=0\\2^2+\left(-3\right)^2-4a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2a-4b+c=-5\\-2a-4b+c=-5\\-4a+6b+c=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{4}{5}\\c=-\dfrac{41}{5}\end{matrix}\right.\)
\(\Rightarrow\)Tâm \(I\left(0;-\dfrac{4}{5}\right)\)
Bài 1:a=b*\(\frac{m}{n}\)
Bài 2:b=a:\(\frac{3}{2}\)
Bài 3:cho hỏi tỉ số % hở
Trong bảng phân bố (tần số hoặc tần suất) ghép lớp, tần suất của lớp thứ i được kí hiệu là f i i và bằng:
f i = n i / n = n i / n . 100 . 1 / 100 = n i / n . 100 % .
Trong đó, n i là tần số của lớp thứ i, n là số tất cả các số liệu thống kê đã cho.
Trong bài toán đã cho, ta có:
f 3 = 14/63 = 0,(2);
Làm tròn đến hàng phần trăm ta có: f 3 ≈ 0,22 = 0,22.100% = 22%.
Do M thuộc \(\Delta\) nên tọa độ có dạng \(M\left(3t;2-t\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(3t-1;-t\right)\\\overrightarrow{BM}=\left(3t+3;-t-3\right)\end{matrix}\right.\)
Đặt \(P=MA^2+MB^2=\left(3t-1\right)^2+\left(-t\right)^2+\left(3t+3\right)^2+\left(-t-3\right)^2\)
\(P=20t^2+18x+19=20\left(t+\dfrac{9}{20}\right)^2+\dfrac{299}{20}\ge\dfrac{299}{20}\)
Dấu = xảy ra khi \(t=-\dfrac{9}{20}\Rightarrow M\left(-\dfrac{27}{20};\dfrac{49}{20}\right)\)