Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x=3y=5z\Rightarrow\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y+z}{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{31}{30}}=-\frac{990}{31}\)
\(\frac{x}{\frac{1}{2}}=-\frac{990}{31}\Rightarrow x=-\frac{495}{31}\)
\(\frac{y}{\frac{1}{3}}=-\frac{990}{31}\Rightarrow y=-\frac{330}{31}\)
\(\frac{z}{\frac{1}{5}}=-\frac{990}{31}\Rightarrow z=-\frac{198}{31}\)
Vậy ...
Có: \(2x=3y=5z\)
=> \(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{-33}{31}\)
=> \(\begin{cases}x=-\frac{495}{31}\\y=-\frac{330}{31}\\z=-\frac{198}{31}\end{cases}\)
a) 2x = 3y = 5z
=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số = nhau , ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y+z}{3+5+2}=\frac{-33}{10}\)
=> x = 3.(-33/10) = -99/10
y = 5.(-33/10) = -165/10
z = 2.(-33/10) = -66/10
Dễ thấy rằng y # 0 (để cho x : y là số xác định)
Hơn nữa x # 0, vì nếu x = 0 thì xy = x : y = 0 nhưng x - y # 0 (vì y # 0)
Vì xy = x : y suy ra y^2 = 1 ---> y = 1 hoặc y = -1
+ Nếu y = 1 ---> x - 1 = x.1 (vô nghiệm nên tr/hợp này loại)
+ Nếu y = -1 ---> x + 1 = - x ---> 2x = -1 ---> x = -1/2 (nhận)
Vậy x = -1/2 ; y = -1.
:)
a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\) và \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)
=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)
=> x-1=0
=> x=1
\(|\frac{1}{2}x-3y+1|=0\)
=> \(\frac{1}{2}.1-3y+1=0\)
=> \(\frac{1}{2}-3y=-1\)
=> \(3y=\frac{1}{2}-\left(-1\right)\)
=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)
=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)
b) Có: \(x^2\le y;y^2\le z;z\le x\)
=> \(x^4\le y^2\) và \(y^2\le x\)
=> \(x^4\le x\)
=> \(x^4=x\)
=> \(x\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\); \(y^2\le z\)và \(z\le x\)
=> \(x^4\le z\le x\)
Mà \(x^4=x\)
=> \(x^4=x=z\)
=> \(z\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\)và \(y^2\le z\)
=> \(x^4\le y^2\le z\)
Mà \(x^4=x=z\)
=> \(x^4=y^2\)
=> \(y^2\in\left\{0;1\right\}\)
=> \(y\in\left\{0;1\right\}\)
c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)
=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)
\(=\frac{x+43}{6}\)
..........Chỗ này?! Có gì đó sai sai.........
Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi
d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)
=> \(ab^2c+abc^2=2+\left(-2\right)=0\)
=> \(abc\left(b+c\right)=0\)
Mà a;b;c là 3 số khác 0
=> \(abc\ne0\)
=> \(b+c=0\)
=> \(b=-c\)
\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)
=> \(abc\left(a+b-c\right)=0\)
Mà \(abc\ne0\)
=> \(a+b-c=0\)
\(a^2bc-abc^2=-4-\left(-2\right)=-2\)
=> \(abc\left(a-c\right)=-2\)
Mà \(abc\ne0\)
=>\(a-c=-2\)
Có \(a+b-c=0\)
=> \(\left(a-c\right)+b=0\)
=> \(-2+b=0\)
=> \(b=2\)
\(b=-c=2\)=> \(c=-2\)
=> \(a-\left(-2\right)=-2\)
=> \(a+2=-2\)
=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra -__-
Mỏi tay quáááá
\(25-y^2=8\left(x-2015\right)^2\)
\(\Leftrightarrow\left(5-y\right)\left(y+5\right)=8\left(x-2015\right)^2\)
Do vế phải luôn không âm nên: vế trái luôn không ấm.
Tức là: \(-5\le y\le5\).Ta có bảng sau:
y | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
8(x - 2015)2 | \(0\) | 9 | 16 | 21 | 24 | 25 | 24 | 21 | 16 | 9 | 0 |
x | 0 | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | (vô nghiệm) | 0 |
Vậy: (x;y) = (0;-5) và (0;5)
x-2xy+y=0
=>x*(1-2y)=-y
=>x=y/(2y-1)
=>2x=2y/(2y-1)
=>2x=1+1/(2y+1)
Để x là số nguyên thì (2y+1) phải là ước của 1
=>2y+1=1 hoặc 2y+1=-1
=>y=0 hoặc y=-1
Với y=0 => x=2
Với y=-1 => x=0
mk cảm ơn, bạn có thể cho mk hỏi một số điều dc k