Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7}{x}=\frac{y}{27}=\frac{-42}{54}\)
+) => \(\frac{y\cdot2}{27\cdot2}=\frac{-42}{54}\)
=> \(y\cdot2=-42\)
\(\Rightarrow y=-21\)
+) \(\frac{7}{x}=\frac{-21}{27}\)
=> \(\frac{7\cdot\left(-3\right)}{x\cdot\left(-3\right)}=\frac{-21}{27}\)
=> \(x\cdot\left(-3\right)=27\)
=> \(x=-9\)
* Lớp 6 chưa học đến tỉ lệ thức nên đây là cách đơn giản nhất r *
\(\frac{y}{27}\)=\(\frac{-42}{54}\)=>\(\frac{2y}{54}\)=\(\frac{-42}{54}\)=>2y= -42 y= \(\frac{-42}{2}\)= -21 \(\frac{7}{x}\)=\(\frac{-21}{27}\)=> -21x=7*27=189 x=\(\frac{189}{-21}\)= -9 Vậy x= -9, y= -21
Bài 9:
Ta có: \(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{z}{-17}=\dfrac{-t}{-9}\)
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{-z}{17}=\dfrac{t}{9}=-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-2\\\dfrac{-y}{3}=-2\\\dfrac{-z}{17}=-2\\\dfrac{t}{9}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\-y=-6\\-z=-34\\t=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=6\\z=34\\t=-18\end{matrix}\right.\)
Vậy: (x,y,z,t)=(-10;6;34;-18)
Bài 11:
Ta có: \(\dfrac{-7}{6}=\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}\)
\(\Leftrightarrow\dfrac{x}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}=\dfrac{t}{102}=\dfrac{u}{-78}=\dfrac{-7}{6}\)
Ta có: \(\dfrac{x}{18}=\dfrac{-7}{6}\)
\(\Leftrightarrow x=\dfrac{18\cdot\left(-7\right)}{6}=-21\)
Ta có: \(\dfrac{-98}{y}=\dfrac{-7}{6}\)
\(\Leftrightarrow y=\dfrac{-98\cdot6}{-7}=84\)
Ta có: \(\dfrac{-14}{z}=\dfrac{-7}{6}\)
\(\Leftrightarrow z=\dfrac{-14\cdot6}{-7}=12\)
Ta có: \(\dfrac{u}{-78}=\dfrac{-7}{6}\)
\(\Leftrightarrow u=\dfrac{-78\cdot\left(-7\right)}{6}=\dfrac{78\cdot7}{6}=91\)
Ta có: \(\dfrac{t}{102}=\dfrac{-7}{6}\)
\(\Leftrightarrow t=\dfrac{-7\cdot102}{6}=-7\cdot17=-119\)
Vậy: (x,y,z,t,u)=(-21;84;12;-119;91)
a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.
=>\(\dfrac{3}{x-5}-\dfrac{y}{3}=\dfrac{1}{6}\)
=>\(\dfrac{9-y\left(x-5\right)}{3\left(x-5\right)}=\dfrac{1}{6}\)
=>9-y(x-5)=1/2(x-5)
=>(x-5)(1/2+y)=9
=>(x-5)(2y+1)=18
=>\(\left(x-5;2y+1\right)\in\left\{\left(18;1\right);\left(-18;-1\right);\left(2;9\right);\left(-2;-9\right);\left(6;3\right);\left(-6;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(23;0\right);\left(-13;-1\right);\left(7;4\right);\left(3;-5\right);\left(11;1\right);\left(-1;-2\right)\right\}\)
36 phần 27= -12 phần x = y phần 3 [ ko có dấu phần nên viết thông cẻm nhoa]